

4th National & 1st International Congress of

APPLIED MICROBIOLOGY

-Abstract Book

14 & 15 May 2025 - Isfahan, Iran

Congress Address:

Research Center For Natural & Biopharmaceutical Products
Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran

ISMIST Address:

Correspondence Office of Iranian Society of Microbial Science & Technology, Alzahra University, Tehran, Iran

amc2025.ui.ac.ir

14th & 15th May 2025 - Isfahan, Iran

فهرست

Biogas Production from Landfill Leachate and Food Waste Using Integrated Biofilter Media and Machine
Learning Optimization
نولید بیوگاز از شیرابه زبالهدانی و ضایعات غذایی با استفاده از رسانههای بیوفیلتر یکپارچه و بهینهسازی با یادگیری ماشین۱۰۰۳ Natural art: Actinobacterial nano-biofertilizer
هنر طبیعت: نانوبیوکود اکتینوباکتریایی
N··Δ
های باکتریایی در حفاظت از محیط زیست و توسعه پایدار
N··Y
کاربرد اَنزیم های میکروبی در درمان سرطان های انسانی
The Role of Microorganisms in Ecological Risk Assessments of Oil Pollutants in the Terrestrial
ت نقش میکروار گانیسم ها در ارزیابی خطرات اکولوژیک آلاینده های نفتی در اکوسیستم خاکی
1.11
قش میکروبها در اقتصاد چرخشی و فرایندهای بازیافت مواد
Neasures to Identify and Prevent Microbial Contamination in Food Factories
قدامات جهت شناسایی و جلوگیری از آلودگی میکروبی در کارخانه های مواد غذایی
نحلیل ژنومی و ارزیابی تجزیه دپولیمر کرفت لیگنین توسط باکتری . <i>Bacillus</i> sp سویه PPSBB_11 تشکیلدهنده بیوفیلم از
لجن كارخانه كاغذسازي
۱۰۱۷
شناسایی ملکولی اپرون کیتیناز باکتری Bacillus pumilus غلامرضا احمدیان
Application of polyhydroxyalkanoates polymer produced by a luminescent Vibrio: A model for controlled
پلی هیدروکسی آلکانوات تولید شده توسط باکتری <i>ویبریوی لومینسانس</i> : مدلی برای رهایش کنترل شده
Nechanisms and biological functions of probiotics in human health and diseases
مکانیسم ها و عملکردهای بیولوژیکی پروبیوتیک ها در سلامت و بیماری های انسان
1.77 Fermentation and Biotechnology: Innovative Pathways Toward Sustainability Mehrdad Azin ¹
نخمیر و بیوتکنولوژی: مسیرهای نوآورانه به سوی پایداری
۱۰۲۵ The Effect of Phage Therapy on Eukaryotic Cells and Especially the Immune System
ثر فاژتراپی بر روی سلول های یوکاریوتی به ویژه سیستم سیستم ایمنی
Y•۲YPetroleum Hydrocarbons
نلفیق نانوتکنولوژی با زیست پالایی برای تجزیه سریع و موثر هیدروکربنهای نفتی
1.79 Cell Free and Cell-Based Protein Expression Systems for Production of Recombinant Antioxidants

Congress Address:

14th & 15th May 2025 - Isfahan, Iran

سیستمهای بیان پروتئین بدون سلول و مبتنی بر سلول برای تولید آنتیاکسیدانهای نوتر کیب
1. Thage therapy: A New approach in the treatment of antibiotic-resistant infections
فاژ درمانی : دیدگاهی جدید در درمان عفونت های مقاوم به درمان با اَنتی بیوتیک
1.77Developments, Challenges and Perspectives of the Uranium Ore Microbial Leaching
پیشرفت ها، چالش ها و چشم اندازهای فروشویی میکروبی کانسنگ اورانیوم
۱۰۳۵agents biocontrol ray irradiation for genetic modification of microbial Application of gamma
کاربرد پرتوتابی با پرتوگاما در اصلاح ژنتیکی عوامل بیوکنترل میکروبی
1.77Downstream operations for manufacturing industrial bioproducts: challenges and achievements
فرآیندهای پاییندستی تولید زیست فرآوردههای صنعتی: چالشها و موفقیتها
Phage cocktail reduces ciprofloxacin resistant <i>Shigella</i> infection by specific diminishing bacterial 1.۳9 invasion, intercellular inactivation in human epithelial cells and modulate the inflammation response
کوکتل فاژ در کاهش عفونت شیگلا مقاوم به سیپروفلوکساسین از طریق کاهش اختصاصی تهاجم باکتری، غیر فعال کردن
درونسلولی در سلولهای اپیتلیال انسانی و تنظیم پاسخ التهابی
N•F1
مكانيسم هاى احتمالي اثرات ضد ميكروبي وزيكول هاى خارج سلولي گياهان: يك مطالعه متاآناليز
1. FrEvaluation of antiviral effect of <i>Helianthus tuberosus</i> extract on Herpes simplex virus type 1
بررسی اثر ضد ویروسی عصاره گیاهی <i>Helianthus tuberosus</i> بر ویروس هرپس سیمپلکس تیپ۱۰۴۴
(04890269)-Investigation of Acetobacter senegalensis LMG 23690T effect on modulation of anti-
inflammatory response in a rat model
۰۴۸۹۰۲۶۹ بررسی اثر استوباکتر سنگالنسیس LMG 23690T در تعدیل پاسخ ضد التهابی در یک مدل رت
1. FY (09070718)-The Significance of Probiotics in the Transmission of Antimicrobial Resistance Genes
۰۹۰۷۰۷۱۸ اهمیت پروبیوتیکها در انتقال ژنهای مقاومت آنتیمیکروبی
(04390243)-Studying the effect of physiological conditions (light and temperature) on the production and 1.59herbicidal properties of the siderophore produced by a rare actinomycete, <i>Amycolatopsis lorida</i>
(04390243)-بررسی تاثیر شرایط فیزیولوژیکی (نور و دما) بر تولید و خواص علف کشی سیدروفور تولید شده توسط اکتینومیست
کمیاب، <i>آمیکولاتوپسیس لوریدا</i>
(04500491)- Screening of bacteria isolated from <i>Haliclona</i> sp. Persian Gulf sponge for production of one antibacterial bioactive molecules
۰۴۵۰۰۴۹۱ غربالگری باکتریهای جدا شده از اسفنج Haliclona sp خلیج فارس برای تولید مولکولهای فعال زیستی
ضدباکتری
(00120704)-Increasing the productivity rate of Pestalan exopolysaccharide production from
۱۰۵۳
۰۰۰۱۲۰۷۰۴ افزایش نرخ بهرهوری تولید اگزوپلیساکارید پستالان در کشت Neopestalotiopsis SKE-15 توسط تخمیر در
فرمانتور
(01890153)-Genome mining of secondary metabolite biosynthetic genes in plasmids of <i>Actinomycetota</i> ν·ΔΔ
۰۱۸۹۰۱۵۳ ژنومکاوی ژنهای بیوسنتزی متابولیتهای ثانویه در پلاسمیدهای Actinomycetota

14th & 15th May 2025 - Isfahan, Iran

Applat 2cle.
(02110038)- Evaluation of aflatoxin M1 in industrial and traditional milk by ELISA and evaluation of \$\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot
۰۲۱۱۰۰۳۸ ارزیابی اَفلاتوکسین M1 در شیر صنعتی و سنتی با روش الایزا و بررسی اَلودگ <i>ی اَسپرژیلوس فلاووس</i> در شیر
استان یزد
۱۰۵۹(07000423)- Bacteriophages and food biosafety in application
۰۷۰۰۰۴۲۳ باکتریوفاژها و امنیت زیستی مواد غذایی در عمل
(09130723)-Therapeutic Potential of Lytic Bacteriophage fThrA Against XDR <i>Acinetobacter baumannii</i> 1.51 in a Rat Burn Model
۰۹۱۳۰۷۲۳ بررسی پتانسیل درمانی باکتریوفاژ لیتیک fThrA علیه Acinetobacter baumannii مقاوم به درمان در مدل
سوختگی موش صحرایی
(00990584)-The Effect of Exogenous Gibberellic Acid on the Activity of Some Antioxidant Enzymes in Legisle Oyster Mushroom (<i>Pleurotus florida</i> P. Kumm.)
۰۰۹۹۰۵۸۴ اثر جیبرلیک اسید اگزوژن بر فعالیت برخی آنزیمهای آنتی اکسیدان در قارچ صدفی خوراکی (Pleurotus florida
1.54(P. Kumm.
Genetic characterization of an extensively drug-resistant uropathogenic Escherichia coli isolate in Iraq
using whole genome sequencing
بررسی خصوصیات ژنتیکی یک جدایه <i>اشرشیا کلی</i> مولد عفونت ادراری دارای مقاومت گسترده دارو در عراق با روش تعیین توالی
کل ژنوم
1.57A review on infection with <i>Nocardia asteroids</i> in fishes, with an emphasis on Iranian fish
1.59(04560292)-Application of Artificial Intelligence (AI) in Microbiology and Medicine
۰۴۵۶۰۲۹۲ -کاربرد های هوش مصنوعی در میکروبیولوژی و پزشکی
(03580260)- Optimization of Recombinant Production of the Peptide Toxin MeICT in Escherichia coli
1.41
۰۳۵۸۰۲۶۰ بهینه سازی تولید نوترکیب توکسین پپتیدی MeICT در باکتری <i>اشرشیا کلی</i>
۰۴۳۰۰۲۵۱ کنترل بیولوژیک باکتری <i>روتیا موسیلاژینوزا</i> به عنوان پاتوژن دهان و دندان توسط مخمر <i>ساکارومایسس سرویزیه</i>
02170092-Fuctional metagenomics study of polyethylene- degrading microbial samples, collected from \· ΥΔ
۔ ۰۲۱۷۰۰۹۲ بررسی متاژنومیکس عملکردی نمونههای میکروبی تجزیهکننده پلاستیک پلیاتیلن، جمع آوری شده از محیطهای
آلوده
(06310413)- Bioactive Properties of Iranian Lentinus tigrinus: Six Years of Research and Future
Y•YY
۰۶۳۱۰۴۱۳ خواص زیست فعال قارچ لنتینوس تیگرینوس (Lentinus tigrinus) بومی ایران: شش سال پژوهش و مسیرهای
آینده
۱۰۷۹ Bacteriophages: Intelligent Weapons in Future Medicine's Battle Against Superbugs and Cancer

4th National Congress & 1thInternational Congress of

APPLIED MICROBIOLOGY

14th & 15th May 2025 - Isfahan, Iran

١٠٨٠	باکتریوفاژها: سلاحهای هوشمند آینده پزشکی در جنگ با ابرمیکروبها و سرطان
١٠٨١	
1 • 7 × · · · · · · · · · · · · · · · · · ·	سایکوبیوتیکها: پروبیوتیکهای تولیدکننده انتقالدهندههای عصبی
۱۰۸۳Transformi	ing Waste into Value-Added Products: Biorefineries for a Sustainable Future
١٠٨۴	تبدیل ضایعات به محصولات باارزش افزوده: پالایشگاههای یستی برای یک آینده پایدار
١٠٨٥	Bacteriophages: Past, Present and Future
١٠٨۶	باکتریوفاژها: گذشته، حال و آینده
۱۰ AV Bioremediation of Soils	Contaminated with Petroleum Compounds, from the Laboratory to Industry
١٠٨٨	پاکسازی زیستی خاکهای آلوده به ترکیبات نفتی، از آزمایشگاه تا صنعت
۱۰۸۹Biocon	vergence: Co-creating a Sustainable Future with Nature's Microarchitecture
1.9.	همگرایی زیستی: همآفرینی آینده بایدار با ریزمعمار طبیعت

14th & 15th May 2025 - Isfahan, Iran

سخنرانيها

Research Center For Natural & Biopharmaceutical Products Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran **ISMIST Office:**

Iranian society of Microbial Science & **Technology**

University

of Isfahan

' 1001

14th & 15th May 2025 - Isfahan, Iran

Biogas Production from Landfill Leachate and Food Waste Using Integrated Biofilter Media and **Machine Learning Optimization**

Syazwani Idrus¹, Nur Ain Fitriah Zamrisham¹

¹ Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, MALAYSIA

Corresponding author: Syazwani Idrus (syazwani@upm.edu.my)

ABSTRACT

This study evaluates the feasibility of co-digesting landfill leachate and liquidised food waste in up-flow anaerobic sludge blanket (UASB) reactors. Batch experiments determined optimal substrate mixing ratios and support carrier integration, while continuous experiments assessed long-term impacts on methane production and digestate quality. Modified reactors incorporated red clay bio rings, ceramic bio rings, and lava rocks as support carriers. Co-digestion with ceramic bio rings notably improved biogas yield (2150 mL/d), specific methane production (293.30 mL CH₄/gCOD added, >66.10% increase over conventional reactors), and COD removal (>80%) at an organic loading rate of 6 g/L/day. The Brunauer-Emmett-Teller (BET) analysis revealed ceramic bio rings had the highest surface area (7.87 m²/g). Artificial neural networks and support vector machines were applied to predict biogas production, with the SVM model achieving superior accuracy ($R^2 = 0.986$). The findings suggest that optimizing substrate ratios and selecting effective support media significantly enhances methanogenic activity, promoting renewable methane production and improved effluent quality.

Keywords: Liquidised foodwaste, Landfill leachtae, Methane, Lava rock, Ceramic bio ring and red clay

14th & 15th May 2025 – Isfahan, Iran

تولید بیوگاز از شیرابه زبالهدانی و ضایعات غذایی با استفاده از رسانههای بیوفیلتر یکپارچه و بهینهسازی با یادگیری ماشین

' 1002

سیازواینی ایدروس، نور آئین فطریاح زمریشم

چکیده

این مطالعه امکانسنجی هضم مشترک شیرابه زبالهدانی و ضایعات غذایی مایع شده را در راکتورهای جریان رو به بالا با پوشش لجن بیههوازی (UASB) ارزیابی می کند. آزمایشهای دستهای نسبتهای بهینه اختلاط بستر و ترکیب حاملهای پشتیبان را تعیین کردند، در حالی که آزمایشهای پیوسته تأثیرات بلندمدت بر تولید متان و کیفیت تفاله را ارزیابی کردند. راکتورهای اصلاح شده شامل حلقههای بیوفیلتر از جنس خاک رس قرمز، سرامیکی و سنگهای آتشفشانی به عنوان حاملهای پشتیبان بودند. هضم مشترک با حلقههای سرامیکی بیوفیلتر به طور قابل توجهی بهرهوری بیوگاز (۲۱۵۰ میلیلیتر در روز)، تولید ویژه متان) ۲۹۳.۳۰ میلیلیتر متان به ازای هر گرم (COD اضافه شده، افزایش بیش از ۴۶.۱۰٪ نسبت به راکتورهای معمولی (و حذف COD (بیش از ۸۰٪) را در نرخ بارگذاری آلی ۶ گرم بر لیتر در روز بهبود بخشید. تحلیل BET نشان داد که حلقههای سرامیکی بالاترین سطح ویژه (۷.۸۷ متر مربع بر گرم) را دارند. شبکههای عصبی مصنوعی و ماشین بردار پشتیبان برای پیشبینی تولید بیوگاز به کار رفتند که مدل SVM متر متب بالاتری با $R^2 = 0.986$ نشان داد. یافتهها نشان میدهند که بهینهسازی نسبت بستر و انتخاب حاملهای پشتیبان مؤثر به طور قابل توجهی فعالیت متانوژنی را افزایش داده و به تولید متان تجدیدپذیر و بهبود کیفیت پساب کمک می کنند.

واژگان کلیدی: ضایعات غذایی مایع شده، شیرابه زبالهدانی، متان، سنگ آتشفشانی، حلقه بیوفیلتر سرامیکی و خاک رس قرمز

14th & 15th May 2025 - Isfahan, Iran

Natural art: Actinobacterial nano-biofertilizer

Tamkeen Zahra¹, Alireza Badeiei³, Kazem Mahdigholi², Javad Hamedi¹

' 1003

1 Department of Translational Biology (Dept. of Microbial Biotechnology), School of Biology, College of Science, University of Tehran, Tehran, Iran

2 Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran

3 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

Corresponding author: Javad Hamedi (jhamedi@ut.ac.ir)

ABSTRACT

Background and aim: Translational biology aims to provide biological solutions to address societal challenges, such as drought and soil salinity, which reduce agricultural productivity. This research was inspired by nature, considering the anhnaced ability of symbiotic organisms to whihstand harsh conditions.

Materials and Methods: The roots of 21 desert plants were disinfected, crushed, and cultured. The plant-growth promoting ability of the resulting actinobacterial isolates was measured through primary and secondary screenings in plates, pots, and fields. The spores of the selected strains were coated with Namontmorillonite and glycerol. The biological properties of the actinobacterium-nanocaly hybrid as well as its physicochemical properties were evaluated by FTIR, Raman spectroscopy, and SEM.

Results: A total of 123 Endophytic actinobacteria were isolated from 21 desert plants, and three strains were selected that were 98.2, 98.4 and 100% similarity to *Streptomyces chromofuscus*, *Streptomyces ambofaciens* and *Streptomyces gardneri*, respectively. These strains enhanced sunflower resistance to salinity and drought by varying degrees. In both greenhouse and field experiments, single or consortia of the isolates increased stem length, flower diameter, weight and chlorophyll, protein and oil content in sunflower compared to the control. Sunflower treated with the *Streptomyces gardneri*-Nanoclay chimera also exhibited improved agronomic characteristics. The physicochemical analysis of the nanobiofertilizer confirme the structural suitability and strong adhesion of its components.

Conclusion: Studying nature can reveal strategies to mitigate crises resulting from industrial activities. This research demonstrates that the symbiotic actinobacteria associated with *Pteropyrum olivieri*, either alone or in combination together, or as a hybrid with nanoclay, can serve as an effective biofertilizer source.

Keywords: Actinobacteria, biofertilizer, clay, drought, *Pteropyrum olivieri*, salinity, *Streptomyces*.

14th & 15th May 2025 – Isfahan, Iran

هنر طبیعت: نانوبیوکود اکتینوباکتریایی

زهرا تمكين، عليرضا بديعي، كاظم مهديقلي، جواد حامدي

' 1004

چکیده

مقدمه و هدف: هدف زیستشناسی ترجمانی ارائه راه حلهای زیستی برای رفع مشکلات جامعه، از جمله کمبود آب و شوری خاک است که سبب کاهش بهرهوری کشاورزی شده است. این پژوهش با الهام از طبیعت و مشاهده افزایش توان موجودات زنده همزیست برای مقابله با شرایط دشوار انجام شده است.

مواد و روشها: ریشه ۲۱ گیاه بیابانی ضدعفونی، خرد و کشت داده شد. توان جدایههای اکتینوباکتر حاصل برای افزایش رشد گیاهان در غربالگری اولیه و ثانوی در پلیت، گلدان و مزرعه سنجیده شد. اسپورهای سویه منتخب با کانی سدیم مونتمورینولیت و گلیسرول پوشش داده شد. ویژگیهای زیستی هیبرید اکتینوباکتر-نانورس و نیز ویژگیهای فیزیکوشیمیایی آن با FTIR، طیفسنجی رامان، و SEM ارزیابی شد.

نتایج: از ۲۱ گیاه بیابانی ۱۲۳ اکتینوباکتر اندوفیت جدا شد و در نهایت سه سویه که به ترتیب ۹۸.۴، ۹۸.۲ و ۲۰۰ درصد به Streptomyces gardneri و Streptomyces ambofaciens شباهت داشتند، انتخاب شد. این سویهها به میزان متفاوت سبب افزایش مقاومت آفتابگردان به شوری و خشکی شدند. در گلخانه و مزرعه، جدایههای منفرد و یا کنسرسیومی سبب افزایش طول ساقه، وزن قطر گل و کلروفیل، پروتئین و روغن در آفتابگردان در مقایسه با شاهد شدند. هیبرید سویه ۳۱۳۶ -نانورس سبب افزایش ویژگیهای زراعی آفتابگردان تیمار شده با آن بود. بررسی ویژگیهای فیزیکوشیمیایی نانوبیوکود نشانگر تناسب ساختاری و چسبندگی خوب اجزای آن بود.

نتیجه گیری: مطالعه طبیعت می تواند راههای مقابله با بحرانهای حاصل از صنعت را نشان دهد. این پژوهش نشان می دهد که اکتینوباکترهای همزیست *Pteropyrum olivieri ج*دا یا همراه با نانورس می توانند منبع مناسبی به عنوان کودهای زیستی باشند.

كليدواژه ها: اكتينوباكترها، كودزيستي، رس، خشكي، شوري، Pterpyrum olivieri Streptomyces

University of Isfahan

' 1005

14th & 15th May 2025 - Isfahan, Iran

Role of Bacterial Biofilms in Environment Protection and Sustainable Development

Hossein Motamedi¹

¹ Department of Biology, Faculty of Science, and Biorefinery Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran)

Corresponding author: Hossein Motamedi (motamedih@scu.ac.ir)

ABSTRACT

Industrialization has caused severe environmental damage and loss of natural resources. Reducing the production of environmental pollutants and processing by-products and wastes are two key strategies for industrialization in line with sustainable development and environmental protection. The use of microorganisms to remove or reduce environmental pollutants and produce value-added compounds from them is considered as an environmentally friendly method. The main problem in using this ability of bacteria is their low performance under operational conditions. The use of microbial biofilms can help bacteria establish themselves in the environment and provide them with better access to organic compounds. Also, bacteria in the biofilm are protected against environmental stresses and toxicity of organic substances, and metabolic pathways are formed between the bacterial population of the biofilm. Therefore, a new approach to the use of bacterial biofilms in processes such as soil, water and air bioremediation, increasing soil fertility, producing bio-based chemical compounds, and producing products in biorefineries has been formed. Successful use of biofilms requires understanding the parameters affecting the quorum sensing, the type suitable surface for biofilm formation, environmental parameters affecting biofilm performance, the possibility of establishing syntrophic metabolism, and the use of biofilm-forming consortia. Understanding and utilizing bacterial biofilms for environmental protection provides the opportunity to achieve green processes and environmentally friendly solutions, which are among the goals of sustainable development.

Research Center For Natural & Biopharmaceutical Products
Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran
ISMIST Office:

14th & 15th May 2025 - Isfahan, Iran

نقش بیوفیلم های باکتریایی در حفاظت از محیط زیست و توسعه پایدار

حسين معتمدي

' 1006

چکیده

صنعتی شدن موجب آسیب های زیست محیطی شدید و از دست رفتن منابع طبیعی گردیده است. کاهش تولید آلاینده های زیست محیطی و فرآوری فرآورده های جانبی و پسماندها دو راهکار کلیدی در جهت صنعتی شدن همگام با توسعه پایدار و حفاظت از محیط زیست است. استفاده از میکروارگانیسم ها برای حذف و یا کاهش آلاینده های محیطی و تولید ترکیبات با ارزش افزوده از آنها به عنوان یک روش سازگار با محیط زیست مورد توجه است. مشکل اصلی در استفاده از این توانایی باکتریها، عملکرد یائین آنها در شرایط عملیاتی است. استفاده از بیوفیلم های میکروبی می تواند به استقرار باکتریها در محیط و دسترسی بهتر آنها به ترکیبات آلی کمک نماید. همچنین باکتریهای موجود در بیوفیلم در برابر استرس های محیطی و سمیت مواد آلی محافظت می شوند و مسیرهای متابولیکی بین جمعیت باکتریایی بیوفیلم شکل می گیرد. از اینرو رویکرد جدید به استفاده از بیوفیلم های باکتریایی در فرآیندهایی همچون زیست پالایی خاک، آب و هوا، افزایش حاصلخیزی خاک، تولید ترکیبات شیمیایی زیست پایه و تولید محصولات در پالایشگاه های زیستی شکل گرفته است. موفق بودن استفاده از بیوفیلم ها نیازمند شناخت پارامترهای تاثیر گذار بر حس حدنصاب، نوع سطح مناسب برای تشکیل بیوفیلم، پارامترهای محیطی موثر بر عملکرد بیوفیلم، امکان برقراری متابولیسم سینتروفی و استفاده از کنسرسیوم های تشکیل دهنده بیوفیلم است. شناخت و بکارگیری بیوفیلم های باکتریایی در جهت حفاظت از محیط زیست امکان دستیابی به فرآیندهای سبز و راهکارهای دوستدار محیط زیست که از اهداف توسعه پایدار است را فراهم می کند.

14th & 15th May 2025 - Isfahan, Iran

Application of Microbial Enzymes for Treatment of Human Cancers

Mohsen Mobini-Dehkordi¹

¹ Department of Genetics, Faculty of Basic Sciences, University of Shahrekord, Shahrekord, Iran

Corresponding author: Mohsen Mobini-Dehkordi (mobini-m@sku.ac.ir)

' 1007

ABSTRACT

Background: The application of microbial enzymes in human cancer treatment represents a promising frontier in oncology, leveraging the unique catalytic properties of enzymes to target tumor cells with high specificity and minimal side effects. Production of bacterial and fungal enzymes was performed by microbial fermentation process. These enzymes such as L-asparaginase, arginine deiminase, cytosine deaminase, methionine gamma-lyase, and nitroreductase, have demonstrated significant potential in cancer therapy through mechanisms like amino acid deprivation, prodrug activation, and immunomodulation. For instance, L-asparaginase, derived from *Escherichia coli* and *Erwinia chrysanthemi*, is already FDA-approved for acute lymphoblastic leukemia (ALL) by depleting asparagine, an essential nutrient for leukemic cells. Similarly, arginine deiminase from *Mycoplasma* and *Aspergillus* has shown efficacy in arginine-auxotrophic cancers, such as hepatocellular carcinoma and melanoma, by degrading extracellular arginine and inducing tumor cell apoptosis.

Another innovative approach involves enzyme-prodrug therapy (EPT), where microbial enzymes like cytosine deaminase (from *E. coli*) convert non-toxic prodrugs (e.g., 5-fluorocytosine) into cytotoxic agents (5-fluorouracil) directly within tumors, minimizing systemic toxicity. Additionally, nitroreductases have been engineered to activate prodrugs like CB1954, enhancing targeted chemotherapy.

Despite their promise, challenges such as immunogenicity, enzyme stability, and tumor heterogeneity remain. Strategies like PEGylation, nanoparticle encapsulation, and genetic engineering are being explored to improve therapeutic outcomes. Furthermore, combining microbial enzymes with immunotherapy, chemotherapy, or nanomedicine (e.g., glucose oxidase for starvation therapy) has shown synergistic effects in preclinical models.

Conclusion: Microbial enzymes offer a versatile and evolving toolkit for precision cancer treatment, with ongoing research focused on optimizing delivery, reducing side effects, and expanding their applicability to diverse cancer types.

Key words: Microbial enzymes, cancer therapy, enzyme-prodrug therapy, nanomedicine, immunotherapy.

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

کاربرد آنزیم های میکروبی در درمان سرطان های انسانی

محسن مبيني دهكردي

' 1008

University

of Isfahan

چکیده

مقدمه و بیان مسئله: کاربرد آنزیمهای میکروبی در درمان سرطان انسان، یک زمینه امیدوارکننده در سرطان شناسی محسوب می شوند که با استفاده از ویژگی های کاتالیتیک منحصر به فرد آنزیم ها، سلولهای توموری را با دقت بالا و عوارض جانبی کم مورد هدف قرار می دهند. تولید آنزیم های باکتریائی و قارچی با فرآیند تخمیر میکروبی صورت می پذیرد. این آنزیم ها مانند ال-آسپاراژیناز، آرژینین دیمیناز، سیتوزین دآمیناز و نیتروردوکتاز، از طریق مکانیسم هایی مانند محروم سازی آمینواسیدی، فعالسازی پیشداروها و تعدیل ایمنی، پتانسیل قابل توجهی در درمان سرطان نشان داده اند. به عنوان مثال، ال-آسپاراژیناز مشتق شده از اشریشیا کلای و اروینیا کریزانتمی، که توسط سازمان غذا و داروی آمریکا برای درمان لوسمی لنفوبلاستیک حاد (ALL) تأیید شده است، با کاهش آسپاراژین (یک ماده مغذی ضروری برای سلولهای لوسمی) عمل می کند. به طور مشابه، آرژینین دیمیناز از مایکوپلاسما و آسپرژیلوس در سرطان های وابسته به آرژینین مانند کارسینوم هپاتوسلولار و ملانوما مؤثر بوده و با تجزیه آرژینین خارج سلولی، آپاپتوز سلولهای توموری را القا می کند.

رویکرد نوین دیگر شامل درمان آنزیم-پیشدارو (EPT) است که در آن آنزیم های میکروبی مانند سیتوزین دآمیناز (از اشریشیا کلای) پیشداروهای غیرسمی مثل ۵-فلوئوروسیتوزین را به عوامل سایتوتوکسیک به نام ۵-فلوئورواوراسیل مستقیماً درون تومور تبدیل می کنند و سمیت سیستمیک را به حداقل می رسانند. همچنین، نیتروردوکتازها برای فعالسازی پیشداروهایی مانند CB1954 مهندسی شده اند و شیمی درمانی هدفمند را بهبود می بخشند.

علیرغم این پتانسیل، چالش هایی مانند تحریم سیستم ایمنی، پایداری آنزیم و ناهمگونی تومور همچنان وجود دارند. راهکارهایی مانند همراه سازی با پلی اتیلن گلایکول، رهایش با نانوذرات و مهندسی ژنتیک برای بهبود نتایج درمانی در حال بررسی هستند. علاوه بر این، ترکیب آنزیم های میکروبی با ایمونوتراپی، شیمی درمانی یا پزشکی نانو (مانند گلوکز اکسیداز برای درمان گرسنگی تومور) در مدلهای پیش بالینی اثرات سینرژیک نشان داده است.

نتیجه گیری: آنزیم های میکروبی ابزاری انعطاف پذیر و در حال تکامل برای درمان دقیق سرطان ارائه می دهند، و تحقیقات جاری بر بهینه سازی روشهای رهایش، کاهش عوارض جانبی و گسترش کاربرد آنها به انواع مختلف سرطان انسان متمرکز است.

کلمات کلیدی: آنزیم های میکروبی، درمان سرطان، درمان با واسطه پیش دارو، پزشکی نانو، ایمونوتراپی

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1009

14th & 15th May 2025 - Isfahan, Iran

The Role of Microorganisms in Ecological Risk Assessments of Oil Pollutants in the Terrestrial Ecosystem

Ahmad Ali Pourbabaee¹

¹Biology and Biotechnology Division, Department of Soil Science, college of Agriculture and Natural Resources, University of Tehran, Iran.

Corresponding author: Ahmad Ali Pourbabaee (pourbabaei@ut.ac.ir)

ABSTRACT

One of the environmental consequences in oil-producing countries is soil contamination by petroleum hydrocarbons, which often occurs during extraction, transportation, and refining processes. Oil pollutants have adverse effects on soil quality and health index, especially in agricultural soils. To adopt management measures and select appropriate strategies for cleaning up these pollutants, it is essential to assess the impact of these threats and the potential risks they pose to terrestrial ecosystems. Methods for assessing risks and determining the risk limits of oil pollutants have mainly focused on their adverse effects on large organisms and some terrestrial invertebrates and plants as receptors, which cannot be analyzed in many cases due to the heterogeneity of their distribution and diversity. Despite the role of soil microorganisms in soil ecosystem health, such as nitrogen fixation, nutrient cycling, and pollutant degradation, their use in soil ecological risk assessment methods has rarely been considered. In this study, while describing the effective microbial indicators in assessing the risk level of soil oil contaminants, the existing challenges will be discussed based on research conducted on different soils in the oil-rich regions of the South and the future prospects for using the knowledge of the composition of microbial communities in the soil ecosystem as an efficient and accurate tool in determining the risk level of soil oil contaminants.

Keywords: Soil, Oil Pollution, Ecological Risk Assessment, Microbial Communities.

References:

- 1- ASTM. 2010. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM E1739–95(2010). Philadelphia, PA, USA.
- 2- Bo Wu a,b, Shuhai Guo a,b, Jianing Wang. 2021. Spatial ecological risk assessment for contaminated soil in oiled fields. Journal of Hazardous Materials 403.

Iranian society of Microbial Science & Technology

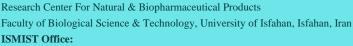
14th & 15th May 2025 - Isfahan, Iran

نقش میکروارگانیسم ها در ارزیابی خطرات اکولوژیک آلاینده های نفتی در اکوسیستم خاکی

احمد على پوربابائي

' 1010

University


of Isfahan

چکیده

یکی از پیامدهای محیطزیستی در کشورهای تولیدکننده نفت، آلودگی خاک به هیدروکربنهای نفتی است که غالبا طی فرایندهای استخراج، انتقال و پالایش رخ میدهد. آلاینده های نفتی اثرات مخربی بر کیفیت و شاخص سلامت خاک به ویژه در خاک های کشاورزی دارد. به منظور انجام اقدامات مدیریتی و انتخاب راهکارهای پاک سازی این آلایند ها، ضرورت دارد میزان تأثیر این تهدیدات و خطرات احتمالی ناشی از آن روی اکوسیستم خاکی ارزیابی شود. روش های ارزیابی خطرات و تعیین حد خطر آلاینده های نفتی، عمدتا روی تأثیر نامطلوب آنها بر جانداران بزرگ و برخی از بی مهرگان خاکزی و گیاهان به عنوان پذیرنده معطوف بوده است که خود به دلیل ناهمگنی در انتشار و تنوع آنها، در بسیاری از موارد قابل تحلیل نیستند. علی رغم نقش میکروارگانیزم های خاکزی در سلامت اکوسیستم خاک از قبیل تثبیت نیتروژن، چرخه غذایی و تجزیه آلاینده ها، بندرت در بکارگیری آنها در روش های ارزیابی خطرات اکولوژیک خاک مورد توجه بوده است. در این مطالعه ضمن بیان شاخص های میکروبی موثر در ارزیابی حد خطر الاینده های نفتی خاک، چالش های موجود با تکیه بر پژوهش های انجام یافته روی خاک های مختلف مناطق نفت خیز جنوب و چشم انداز آینده در بکارگیری دانش ترکیب جوامع میکروبی اکوسیستم خاکی به عنوان یک ابزار کارآمد و دقیق در تعیین حد خطر آلاینده های نفتی خاک بحث خواهد شد.

كلمات كليدى: خاك، آلودگي هاي نفتي، ارزيابي خطر، جوامع ميكروبي

University

of Isfahan

' 1011

14th & 15th May 2025 - Isfahan, Iran

The role of microorganisms in the circular economy and processes for resource recovery

Mohammad-Hossein Sarrafzadeh¹

¹ UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Corresponding author: Mohammad-Hossein Sarrafzadeh (sarrafzdh@ut.ac.ir)

ABSTRACT

Background: The transition to a circular economy (CE) is essential for sustainable resource management, and microorganisms play a pivotal role in enabling efficient waste valorization and resource recovery. The author believes that its implementation needs its link with water cycle. CE in water sector is beneficial, including waste degradation, nutrient recycling, and the production of value-added products. Microbial communities facilitate the closing of water loop through bioprocesses. Microbial technologies enhance energy and resource recovery from wastewater and organic residues.

Objective: This paper highlights the potential of microbial-driven processes to close material loops, reduce environmental pollution, and contribute to a regenerative economic model by implementing CE through Nature-based-Solutions (NbS). By harnessing microbial capabilities, industries can transition from linear waste disposal to circular resource recovery, aligning with global sustainability goal of SDG12. The main objective is analysis of microbial application in sustainable water management, reducing wastes and recovery of water and other resources.

Context: Microorganisms play a role in various processes such as the decomposition of organic waste and the production of energy from wastewater in anaerobic digestion with the formation of biogas as a renewable resource. Also, some microbes in the water cycle help close the loop of the water cycle by participating in various processes such as biological treatment of wastewater, removal of pollutants, and recovery of nitrogen and phosphorus. Technologies such as membrane bioreactors (MBR) and biosorption methods enable water reuse and nutrient recovery. Bacteria in activated sludge can extract nutrients from wastewater and convert them into biofertilizers. Microalgae also help treat wastewater and produce bioproducts by absorbing carbon dioxide and producing biomass.

Conclusion: Microbes, as an efficient tool in the circular economy, enable the transformation of waste into valuable resources. In aquatic systems, microbes not only help to achieve responsible consumption and production (SDG 12), but also enable resource recycling and reduce pressure on freshwater resources. Future research should focus on interdisciplinary approaches to maximize microbial efficiency and integrate these processes into large-scale industrial applications.

Keywords: Circular economy, Microorganisms, Resource recovery, SDG12, Nature-based Solutions

14th & 15th May 2025 - Isfahan, Iran

نقش میکروبها در اقتصاد چرخشی و فرایندهای بازیافت مواد

محمدحسين صراف زاده

' 1012

چکیده

پیشینه پژوهش: اقتصاد چرخشی به عنوان یک الگوی پایدار، بر کاهش ضایعات و بازیافت منابع تمرکز دارد. در این زمینه، میکروارگانیسمها به دلیل تواناییهای منحصربهفرد در تجزیه و تبدیل مواد زائد، نقش کلیدی ایفا میکنند. اما به اعتقاد نگارنده، موفقیت در پیاده سازی اقتصاد چرخشی نیازمند پیوند آن با چرخه آب است. اقتصاد چرخشی در بخش آب به عنوان راهکاری کلیدی برای بازیابی منابع و کاهش ضایعات مطرح شده است. میکروارگانیسمها به عنوان بازیگران اصلی در تصفیه و بازیافت آب، امکان بستن چرخه آب را از طریق فرآیندهای زیستی فراهم میکنند. مطالعات نشان دادهاند که سیستمهای مبتنی بر میکروبها می توانند در تصفیه فاضلاب، بازیابی مواد مغذی و تولید محصولات باارزش از پسابها مؤثر باشند

هدف: هدف این مقاله بررسی نقش میکروبها در تسهیل اقتصاد چرخشی از طریق فناوریهای زیستی و بر مبنای راهکارهای طبیعت محور است است. این مقاله به بررسی نقش میکروارگانیسمها در تحقق اقتصاد چرخشی آبی با تمرکز بر هدف توسعه پایدار (SDG 12)۱۲ میپردازد. هدف اصلی، تحلیل کاربردهای میکروبی در مدیریت پایدار آب، کاهش آلودگی و بازیافت منابع از جریانهای زائد آبی است.

متن: میکروارگانیسمها در فرایندهای مختلفی مانند تجزیه پسماندهای آلی و تولید انرژی از فاضلاب در هضم بیهوازی با تشکیل بیوگاز به عنوان یک منبع تجدیدپذیر نقش دارند.همچنین، برخی میکروبها در چرخه آب با مشارکت در فرآیندهای مختلفی مانند تصفیه بیولوژیکی فاضلاب، حذف آلایندهها و بازیابی نیتروژن و فسفر، به بستن حلقه چرخه آب کمک میکنند. فناوریهایی مانند بیوراکتورهای غشایی (MBR) ، روشهای جذب زیستی، امکان استفاده مجدد از آب و استحصال مواد مغذی را فراهم میسازند. باکتریهای موجود در لجن فعال، میتوانند مواد مغذی را از فاضلاب استخراج کرده و آنها را به کودهای زیستی تبدیل کنند. همچنین، ریزجلبکها با جذب دیاکسید کربن و تولید زیستوده، به تصفیه پساب و تولید محصولات زیستی کمک میکنند

نتیجه گیری: میکروبها به عنوان ابزاری کارآمد در اقتصاد چرخشی، امکان تبدیل ضایعات به منابع ارزشمند را فراهم میسازند. در سیستمهای آبی، میکربها نه تنها به تحقق مصرف و تولید مسئولانه (SDG 12) کمک میکند، بلکه امکان بازیافت منابع و کاهش فشار بر منابع آب شیرین را فراهم میسازد. برای گسترش این فناوریها، نیاز به تحقیقات بیشتر در زمینه بهینهسازی فرآیندها و توسعه مدلهای اقتصادی برای اجرای آنها در مقیاس صنعتی وجود دارد.

کلمات کلیدی: اقتصاد چرخشی آبی، بازیافت مواد، هدف توسعه پایدار ۱۲، تصفیه زیستی فاضلاب، راهکارهای طبیعت محور

14th & 15th May 2025 - Isfahan, Iran

Measures to Identify and Prevent Microbial Contamination in Food Factories

Shahriyar Dabirian¹

¹ PhD in Food Hygiene, Board member at Dairy Products Industries Society, Tehran, Iran

' 1013

Corresponding author: Sh.dabir1970@gmail.com

Abstract

Microorganisms in the food industry are divided into two groups: beneficial microbes and harmful microbes (pathogenic and spoilage-producing). Harmful microbes can enter food through various routes (raw materials and packaging; process (surfaces and equipment, etc.) or as secondary contamination after heat treatment) and cause problems in it.

Sampling is the first step in identifying microbes. Sampling is a specialized process and must be performed by competent personnel and under aseptic conditions. Microbial sampling of surfaces and equipment is performed using the swab method, surface washing method, adhesive tape method, and direct transfer method on agar.

The plating method is used to take samples from the production hall and examine the microbial status of the hall air. (Method 1/1/1). It should be noted that the important sources of microbial contamination include the activities of personnel in the production hall (without appropriate work clothes) and the equipment used. One of the main ways to prevent microbes from entering food is to establish appropriate GMP (Good Manufacturing Practices) in factories. Selecting the factory location, conditions of the production halls; appropriate cleaning and washing and CIP, microbial quality control of raw materials and packaging, air control of the production hall, storage, personnel hygiene and appropriate work clothes, establishing management systems in the laboratory (17025) and GLP. In order to accurately announce the test results, pest and insect removal are among the items considered in establishing GMP.

Also, performing appropriate thermal processes (pasteurization, sterilization), using membrane and filtration methods (microfiltration and nanofiltration), storing food in cold conditions and freezing, a proper distribution network, and maintaining a cold chain in pasteurized products can lead to the elimination, reduction, and prevention of the activity of microorganisms.

Among the microorganisms that are considered primary and secondary contaminants in the food industry are: the Enterobacteriaceae family such as (coliforms - *Escherichia coli* - Salmonella), *Staphylococcus aureus*, *Bacillus cereus*; molds and yeasts, and sulfite-reducing clostridia.

14th & 15th May 2025 - Isfahan, Iran

اقدامات جهت شناسایی و جلوگیری از آلودگی میکروبی در کارخانه های مواد غذایی

شهريار دبيريان

چکیده

' 1014

میکروارگانیزم ها در صنعت غذا به دو گروه میکروب های مفید و میکروب های مضر (بیماری زا و مولد فساد) تقسیم می شوند. میکروب ها ی مضر میتوانند از طریق راههای مختلف (مواد اولیه و بسته بندی، فرایند (سطوح و تجهیزات..) و یا به عنوان آلودگی ثانویه بعد از تیمار حرارتی) وارد غذا شده وسبب بروز مشکلاتی در آن گردند.

نمونه برداری به عنوان اولین مرحله برای شناسایی میکروب ها می باشد .نمونه برداری فرایندی تخصصی است و باید توسط پرسنل ذیصلاح انجام و در شرائط اسپتیک صورت پذیرد. نمونه برداری میکروبی از سطوح و تجهیزات با استفاده از روش سواپ ؛روش شستشوی سطحی ,روش نوار چسب ؛و روش انتقال مستقیم بر روی آگار انجام می شود.

جهت نمونه برداری از سالن تولید و بررسی وضعیت میکروبی هوای سالن ازروش پلیت گذاری استفاده می شود . (روش ۱/۱/۱) و لازم به ذکر است از منابع مهم آلودگی میکروبی می توان به فعالیت پرسنل در سالن تولید(بدون داشتن لباس کار مناسب) و تجهیزات مورد استفاده اشاره کرد . یکی از اصلی ترین راههای جلوگیری از ورود میکروب ها به غذا استقرار مناسب GMP (شرائط خوب ساخت) در کارخانه ها می باشد . انتخاب محل کارخانه , شرائط سالن های تولید ؛نظافت و شستشو و CIPمناسب، کنترل کیفی میکروبی مواد اولیه و بسته بندی ,کنترل هوای سالن تولید ,انبارش ,بهداشت پرسنل و لباس کار مناسب, استقرار سیستم های مدیریتی در آزمایشگاه (۱۷۰۲۵) و GLP.به منظور صحت اعلام نتایج آزمون ,دفع آفات و حشرات موذی از جمله موارد مورد نظر در استقرار GMP می باشد.

همچنین انجام فرایند های حرارتی مناسب (پاستوریزاسیون ,استریلیزاسیون),استفاده از روش های غشایی و فیلتراسیون (میکروفیلتراسیون و نانوفیلتراسیون), نگهداری مواد غذایی در شرائط سرد و انجماد , ,شبکه توزیع مناسب و حفظ زنجیره سرد در فراورده های پاستوریزه می تواند منجر به حذف ,کاهش و جلوگیری از فعالیت میکروارگانیزم ها شود. از جمله میکروارگانیزم هایی که در صنعت غذا به عنوان آلودگی اولیه و ثانویه مطرح می گردند می توان به : خانواده آنترباکتریاسه مانند (کلی فرم ها اسرشیا که در صنعت غذا به عنوان آلودگی اولیه و شانویه سرئوس؛ کپک ها و مخمرها, کلستریدیوم های احیا کننده سولفیت اشاره کرد.

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

Genomic analysis and evaluation of kraft lignin depolymerization by biofilm forming- igninolytic Bacillus sp. strain PPSBB_11 isolated from pulp-paper mill sludge

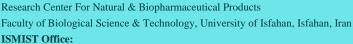
Vineet Kumar¹, Pradeep Verma¹

¹ Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India;

' 1015

University

of Isfahan


Corresponding Author: drvineet.micro@gmail.com

Abstract

Kraft lignin (KL) is a major heterogeneous residual by-product generated by kraft-based pulp and paper industries. This study investigates the lignin depolymerization and decolourisation capabilities of Bacillus sp. strain PPSBB 11, with the objective of reducing color and lignin content within a short duration. Notably, strain PPSBB 11 was observed to form a robust biofilm—a prevalent mode of bacterial growth in contaminated environments—which potentially enhances its adaptability and efficiency in degrading recalcitrant compounds like KL. The potential consortium was able to reduce lignin by 73% after 8 days of incubation at pH 7.6 and 35 °C. The UV-Vis spectral scan and FT-IR analysis indicated the degradation and depolymerization after treatment. Further, the GC-MS analysis successfully showed that alkaline lignin degradation of strain PPSBB 11 produced different kinds of products, including dodecanoic acid, 3hydroxy-; 7-methyl-Z-tetradecen-1-ol acetate; 9-hexadecenoic acid; pentadecanoic acid, 14-bromo-; and octadecanoic acid. The whole-genome sequence (WSG) of strain PPSBB 11 was performed by the Illumina NovaSeq 6000 sequencing platform, and the draft genome was reported. The genome of PPSBB 11 was found to have a size of 0.37 Mb encoding 3689 genes responsible for genetic expressing through transcription and translation. Additionally, PPSBB 11 contains 52 RNA (50 tRNA, 1 rRNA, and 1 tmRNA. Genome sequencing and annotation revealed the presence of lignin-degrading enzyme-coding genes. Further functional annotation using the COG and KEGG databases identified various genes and metabolic pathways associated with biofilm formation. These findings suggest that Bacillus strain PPSBB 11 possesses significant potential for the decolourisation and depolymerization of KL.

Keywords: Pulp-paper industry; Kraft Lignin; Whole Genome Sequencing; Decolourisation; Biofilm formation

14th & 15th May 2025 - Isfahan, Iran

تحلیل ژنومی و ارزیابی تجزیه دپولیمر کرفت لیگنین توسط باکتری .Bacillus sp سویه PPSBB_11 تشکیل دهنده بیوفیلم از لجن کارخانه کاغذسازی

' 1016

وینیت کومار، پرادیپ ورما

چکیده

لیگنین کرفت (KL) یکی از محصولات جانبی متنوع عمده است که توسط صنایع کاغذسازی مبتنی بر کرفت تولید می شود. این مطالعه توانایی تجزیه دپولیمر و حذف رنگ لیگنین توسط باکتری .Bacillus sp سویه PPSBB_11 یک بیوفیلم قوی تشکیل می دهد، که این و محتوای لیگنین بررسی می کند. به طور قابل توجهی مشاهده شد سویه PPSBB_11 یک بیوفیلم قوی تشکیل می دهد، که این حالت رایج رشد باکتری در محیطهای آلوده است و احتمالاً سازگاری و کارایی آن را در تجزیه ترکیبات مقاوم مانند KL افزایش می دهد. این مخلوط پتانسیل کاهش ۲۷٪ لیگنین را پس از ۸ روز انکوباسیون در 7.6 pp و دمای ۳۵ درجه سانتی گراد نشان داد. اسکن طیف VV-Vis و آنالیز FT-IR پس از تیمار نشان دهنده تجزیه و دپولیمر شدن بود. همچنین، آنالیز GC-MS به خوبی نشان داد که تجزیه لیگنین قلیایی توسط سویه PPSBB_11 محصولات متنوعی از جمله اسید دودکانوییک ۳-هیدروکسی، استات ۷-متیرادسن-۱-اول، اسید ۹-هگزادسنوییک، اسید پنتادکانویک ۲۴-برمو، و اسید اوکتا دکانویک تولید کرده است. توالی یابی متیل-Z-تترادسن-۱-اول، اسید ۹-هگزادسنوییک، اسید پنتادکانویک آز طریق رونویسی و ترجمه هستند. همچنین II السانام و پیشنویس ژنوم وجود ژنهای کدکننده آنزیمهای شامل ۹۲ PPSBB_11 رابر ۳۷۰ مگاباز با ۹۸۹ ژن بود که مسئول بیان ژنتیکی از طریق رونویسی و ترجمه هستند. همچنین ITRNA۱ ، و در این یافتهها نشان می دهند که سویه KEGG و COG و کولیسی و متابولیکی مرتبط با تشکیل بیوفیلم را شناسایی کرد. این یافتهها نشان می دهند که سویه KEGG و COG و پتانسیل قابل متابولیکی مرتبط با تشکیل بیوفیلم را شناسایی کرد. این یافتهها نشان می دهند که سویه و در و دولیمر شدن لیگنین کرفت دارد.

واژگان کلیدی: صنعت کاغذسازی؛ لیگنین کرفت؛ توالی یابی کل ژنوم؛ حذف رنگ؛ تشکیل بیوفیلمتجزیه و تحلیل ژنومی

14th & 15th May 2025 - Isfahan, Iran

Molecular characterization of Chitinase Operon of Bacillus pumilus

Gholamreza Ahmadian¹

Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

' 1017

Corresponding Author: Gholamreza Ahmadian (ahmadian@nigeb.ac.ir)

Abstract

Bacillus pumilus SG2, isolated from a high-salinity marsh in Iran, secretes two family 18 chitinases—ChiS and ChiL—under catabolite repression control and exhibits potent antifungal and antibacterial activities. In the first report, Ghasemi et al. (2011) cloned the mature chiS and chiL genes (minus their Sec-pathway signal peptides) into pQE-30, heterologously expressed them in Escherichia coli M15, and purified the His6-tagged proteins by Ni-NTA chromatography. ChiS (75 kDa) displayed optimal activity at pH 6.0 and 50 °C, while ChiL (64 kDa) was best at pH 6.5 and 40 °C. Both enzymes hydrolyzed colloidal chitin, but only ChiS exhibited lysozyme activity, degrading bacterial peptidoglycan (e.g., Xanthomonas spp.) and showing broad antifungal action against Fusarium graminearum, Rhizoctonia solani, Magnaporthe grisea, Sclerotinia sclerotiorum, Trichoderma reesei, Botrytis cinerea, and Bipolaris sp. . Structural homology modeling revealed ChiS's GH-18 catalytic domain aligns closely (~83% similarity) with B. circulans ChiA1, including conserved Glu/Asp catalytic residues.

Ahmadian et al. (2007) first characterized SG2's secretome in colloidal-chitin-induced cultures, identifying two secreted bands (\sim 63 and 74 kDa) by SDS-PAGE and MS/MS as ChiS and ChiL. Both are produced only in chitin's presence and repressed by glucose, indicating global carbon catabolite repression (CCR). The chiSL operon spans \approx 5.8 kb, with chiS (696 aa) and chiL in tandem, separated by only 63 bp, suggesting polycistronic transcription. ChiS contains an N-terminal GH-18 domain, a fibronectin III module, and a ChtBD3 cellulose-binding domain, whereas ChiL harbors GH-18 and a C-terminal ChiC domain.

Shali et al. (2011) dissected the chiSL promoter by cloning increasing 5' truncations upstream of lacZ in a pBS72/pUC18 shuttle and integrating into B. subtilis. Primer extension mapped two transcription start sites at -287 nt (distal) and -65 nt (proximal) relative to the chiS start codon. A canonical $\sigma^A -35/-10$ motif was present in the distal promoter, while the proximal -35 diverged from consensus. A cre sequence (WTGNAANCGNWNNCW) located between -136 and -123 nt mediated CCR: deletion of this cre relieved glucose repression, rendering chiSL expression constitutive.

Building on this, Morabbi-Heravi et al. (2015) developed a chitin-inducible expression system in B. subtilis using PchiS. By testing full-length and cre-deleted promoter variants fused to lacZ, they achieved up to 1,800 Miller units of β -galactosidase activity upon chitin induction—comparable to IPTG-induced systems, but using inexpensive chitin as inducer.

Finally, Vahed et al. (2013) used combined UV and nitrous-acid mutagenesis to generate a mutant (AV2-9) with $\approx 30\%$ higher chitinase activity. Sequencing the chiSL operon revealed a single G \rightarrow A transition in chiL's GH-18 catalytic domain (Gly \rightarrow Glu), which when expressed in E. coli increased specific activity by 30% without altering secretion levels. The Gly \rightarrow Glu substitution likely enhances substrate binding or turnover, as supported by SDM/PoPMuSiC stability predictions and antifungal assays demonstrating superior inhibition of *F. graminearum* and *Bipolaris* sp. .

Together, these studies elucidate SG2's dual-chitinase system—from gene and protein structure, through promoter regulation and biotechnological application, to strain improvement by mutagenesis—highlighting its promise for cost-effective chitin-based biopesticides and inducible expression platforms.

Research Center For Natural & Biopharmaceutical Products
Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran
ISMIST Office:

14th & 15th May 2025 - Isfahan, Iran

شناسایی ملکولی ایرون کیتیناز باکتری Bacillus pumilus

غلامرضا احمديان

حكىدە

' 1018

باکتری Bacillus pumilus SG2 که از مردابی با شوری بالا در ایران جدا شده است، دو آنزیم کیتیناز خانواده ۱۸ به نامهای ChiL و ترشح می کند که تحت کنترل مهار کاتابولیتی قرار دارند و فعالیتهای ضدقارچی و ضدباکتری قوی از خود نشان میدهند. در اولین گزارش، Ghassamiو همکاران (۲۰۱۱) ژنهای بالغ chiL (و chiS بیان کردند و E. coli M15 بیان کردند و Ghassami بیان کردند و پروتئینهای دارای تگ His6 را با کروماتوگرافی Ni-NTA خالصسازی کردند ChiS با وزن مولکولی ۷۵ کیلو دالتون در و PH 6.0 و دمای ۵۰ درجه سانتی گراد بیشترین فعالیت را داشت، در حالی که ChiL با وزن ۶۴ کیلو دالتون در 6.5 pH و دمای ۴۰ درجه سانتی گراد بهینه بود. هر دو آنزیم، کیتین کلوئیدی را هیدرولیز کردند اما فقط ChiS فعالیت لیزوزیمی نشان داد که موجب تخریب پپتیدوگلیکان باکتریها) مثلاً گونههای (Xanthomonas) فعاليت ضدقارچي وسيعي عليه قارچهايي مانندXanthomonas وفعاليت ضدقارچي وسيعي عليه قارچهايي مانند Botrytis cinerea ،Trichoderma reesei ،Sclerotinia sclerotiorum ،grisea مي شود. مدل سازي همولوژيکي ساختاري نشان داد دامنه کاتالیتیک GH-18 در ChiS با ChiA1 متعلق به B. circulans حدود ۸۳٪ شباهت دارد و بقایای کاتالیتیک Glu/Asp حفظ

در مطالعهای توسط احمدیان و همکاران (۲۰۰۷)، پروتئینهای ترشحی سویه SG2 در کشتهای القاشده با کیتین کلوئیدی شناسایی شدند که دو باند ترشحی (حدود ۶۳ و ۷۴ کیلو دالتون) از طریق SDS-PAGE و MS/MS به ترتیب ChiL و ChiL بودند. این دو آنزیم تنها در حضور کیتین تولید شده و توسط گلوکز مهار میشوند که نشاندهنده مهار کاتابولیت کربن عمومی (CCR) است. اپرون chiSL تقریباً ۵.۸ کیلوباز طول دارد که شامل ژنهای chiS (۶۹۶ اسید آمینه) و chiL است که تنها با ۶۳ جفت باز از هم جدا شدهاند و این ساختار نشان دهنده رونویسی پلیسیسترونیک است ChiS .دارای دامنه GH-18 در انتهای N، ماژول فیبرونکتین III و دامنه اتصال به سلولز ChtBD3 است، در حالی که ChiL در انتهای C است. ChiC و دامنه ChiC در انتهای C است.

شالی و همکاران (۲۰۱۱) پروموتر chiSL را با کلون کردن بخشهای متوالی کوتاهشده از ۵ در بالادست lacZ و تلفیق آنها در بررسی کردند. توسعه پرایمر، دو نقطه شروع رونویسی را در –۲۸۷ نوکلئوتید (دور) و –۶۵ نوکلئوتید (نزدیک) نسبت به کدون شروع تعیین کرد. موتیفهای کاننیکال- ۳۵ ه^A ا ۱۰/–۳۵ در پروموتر دوردست وجود داشت، اما در پروموتر نزدیک divergent ۳۵ بود. توالی (WTGNAANCGNWNNCW)در بازه –۱۲۶ تا –۱۲۳ نوکلئوتیدی، میانجی مهار CCR بود: حذف این cre مهار گلوکز را از بین برد و بيان chiSL را دائمي كرد.

مورابی هروی و همکاران (۲۰۱۵) از پروموتر PchiS سیستم بیان قابل القا با کیتین در B. subtilis طراحی کردند. آنها با آزمایش پروموترهای کامل و حذفشده از cre متصل به lacZ تا ۱۸۰۰ واحد میلر فعالیت بتا-گالاکتوزیداز تحت القای کیتین به دست آوردند که عملکردی مشابه سيستم القا شده با IPTG ولى با استفاده از كيتين ارزان قيمت است.

در نهایت، واحد و همکاران (۲۰۱۳) با استفاده ترکیبی از جهشزایی UV و اسید نیتروز، موتانتی به نام 9-AV2 با فعالیت کیتیناز حدود ۳۰٪ بالاتر تولید کردند. توالی یابی اپرون chiSL نشان داد که در دامنه کاتالیتیک GH-18 ژن chiL تغییری از A به A (گلایسین به گلوتامات) وجود دارد که وقتی در E. coli بیان شد، فعالیت اختصاصی آن ۳۰٪ افزایش یافت بدون تغییر در سطح ترشح. جایگزینی گلایسین با گلوتامات احتمالاً باعث افزایش اتصال یا گردش سوبسترا میشود، که توسط پیش بینیهای پایداری SDM/PoPMuSiC و آزمایشهای ضدقارچی که مهار بهتری بر F. graminearum و Bipolaris sp. نشان دادند، حمايت مىشود. در مجموع، اين مطالعات سيستم دوگانه كيتيناز سويه SG2 را از نظر ساختار ژن و پروتئین، تنظیم پروموتر و کاربردهای بیوتکنولوژیکی تا بهبود سویه با جهشزایی شفافسازی کرده و نویددهنده کاربرد آن در آفت کشهای زیستی مبتنی بر کیتین و سیستمهای بیان القا شونده با هزینه پایین است.

Biopharmaceutical Products

' 1019

14th & 15th May 2025 - Isfahan, Iran

Application of polyhydroxyalkanoates polymer produced by a luminescent Vibrio: A model for controlled release

Mansour Mashreghi 1

¹ Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Corresponding Author: Mansour Mashreghi (mashrghi@um.ac.ir)

Abstract

Polyhydroxyalkanoates are biodegradable and biocompatible polymers that can be produced by many bacteria. The purpose of this study is to introduce polyhydroxyalkanoate produced by a Vibrio species to encapsulate an herbicide (Treflan) for its controlled release. The PHA polymer has been produced by the bacteria after optimization of culture medium. The produced polymer is subjected to several analyses, including TEM, FTIR, XRD, and H-NMR. The antioxidant activity of the polymer, as well as its antibacterial activity against plant pathogenic bacteria, was investigated. The emulsion method was used to produce microcapsules. FTIR and XRD analyses confirmed the combination of herbicide and polymer. FE-SEM imaging showed that the microcapsules have a spherical shape with an approximate diameter of 1-2.5 um. The herbicide loading rate and its encapsulation efficiency were also measured, which were 16.64% and 66.56%, respectively. The herbicidal activity of microcapsules was investigated against two plants: Amaranth and Setaria. The results indicated that the germination rate in both plants was reduced by 80 to 90% after using microcapsules containing herbicide. The negative effect of encapsulated herbicide on the soil microbial population was also investigated, which indicated a less negative effect of encapsulated herbicide compared to its free form. Based on the results of this research, the produced polymer can be considered a suitable option for the controlled release of herbicides.

Keywords: Polyhydroxyalkanoate (PHA); luminescent Vibrio; biopolymer; microcapsule; herbicide; controlled release

Research Center For Natural & Biopharmaceutical Products

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

پلی هیدروکسی آلکانوات تولید شده توسط باکتری *ویبریوی لومینسانس*: مدلی برای رهایش کنترل شده

منصور مشرقي

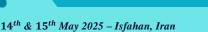
' 1020

University

of Isfahan

چکیده:

پلیههدروکسیآلکانواتها پلیمرهای زیست تخریب پذیر و زیست سازگاری هستند که توسط بسیاری از باکتری ها تولید می شوند. هدف از این مطالعه معرفی پلیههدروکسیآلکانوات تولید شده توسط یک باکتری ویبریوی لومینانس می باشد که برای کپسوله کردن علف کش (ترفلان) با هدف رهایش کنترل شده آن استفاده شده است. بدین منظور ابتدا پلیمر توسط باکتری مزبور پس از بهینه سازی شرایط کشت تولید شد. بلیمر تولید شده توسط آنالیزهای XRD ،FTIR ،TEM و بررسی گردید. خاصیت آنتیاکسیدانی پلیمر و همچنین خاصیت ضدباکتریایی آن علیه دو باکتری بیماریزای گیاهی مورد بررسی قرار گرفت. برای تولید میکروکپسول حاوی علف کش ترفلان از روش امولسیون استفاده شد. آنالیزهای FTIR و XRD ترکیب شدن علف کش با پلیمر را تایید نمودند. تصویربرداری میکروسکوپ الکترونی روبشی نشان داد که میکروکپسولها دارای شکل کروی با قطر تقریبی ۱ تا ۲/۵ میکرومتر میباشند. میزان بارگیری علف کش و بازدهی کپسوله شدن آن به ترتیب ۱۶/۹۶٪ و ۱۶/۹۶٪ بهدست آمد. اثر میکروکپسولهای حاوی علف کش با گیاه تاج خروس و دمروباهی مورد بررسی قرار گرفت. نتایج بهدست آمده حاکی از اثر مطلوب میکروکپسولهای حاوی علف کش با کپسوله شده ناز این پژوهش، پلیمر تولید شده می تواند به عنوان گزینه ای مناسب کهسوله شده نسبت به حالت آزاد آن بود. بر اساس نتایج حاصل از این پژوهش، پلیمر تولید شده می تواند به عنوان گزینه ای مناسب برای رهایش کنترل شده علف کش در نظر گرفته شود.


کلیدواژه ها: پلیهیدروکسی آلکانوات، پلیمر زیستی، میکروکپسول، علفکش تری فلورالین ، رهایش کنترل شده

Mechanisms and biological functions of probiotics in human health and diseases

Saeed Mirdamdi 1

¹ Biotechnology Department of Iranian Research organization for Science and Technology (IROST),

Corresponding Author: Saeed Mirdamdi (Mirdamadi@irost.ir)

ABSTRACT

Today, understanding the mechanisms of action of probiotics has led us to produce a variety of useful products, including postbiotic, parabiotic, phagebiotic, psychobiotic, pharmabiotic molecules and also finally produces next generation probiotics (NGP). In the human body, more than ten times the number of human cells, microorganisms such as bacteria, fungi, viruses, and protozoa are alive, and their total genes is more than 100 times of the host's genes. This community which is called microbiome, by producing its own metabolites, plays an important role in human health and disease. Therefore, any manipulation of this community will push the balance of the body towards more health or disease. In this lecture, some examples of the research activities carried out in the Biotechnology Department of the Iranian Research Organization for Science and Technology (IROST) to evaluate the mechanisms of action of probiotics will be presented. Lactic acid bacteria as starter cultures and probiotic of dairy products, screened to production of antioxidant, anti-diabetic, anti-hypertensive, anti-Helicobacter pylori and anti- Melanogenesis bioactive compounds. Their biological mechanism will be discussed based on the production of dairy synbiotics, postbiotics and bioactive peptides derived from them to use in the food industries. The production of inhibitor molecules of alpha-amylase, alpha-glucosidase, tyrosinase and anti-attachment of pathogenic bacteria to stomach and intestinal cells are the tools of action of these useful bacteria.

Keywords: Probiotic, Postbiotic, New generation probiotics, Mechanisms

' 1021

14th & 15th May 2025 - Isfahan, Iran

مکانیسم ها و عملکردهای بیولوژیکی پروبیوتیک ها در سلامت و بیماری های انسان

سعید میردامادی

چكىدە

' 1022

University

of Isfahan

امروزه شناخت مكانيسم هاى عملكرد پروبيوتيك ها باعث توليد محصولات متنوعى از جمله پست بيوتيك ها ، پارابيوتيك ها، pharmabiotics ، psychobiotics ، phagebiotics و در نهایت pharmabiotics ، psychobiotics ، phagebiotics انسان بیش از ده برابر سلول های بدن میکروارگانیسمهایی نظیر باکتری ها ، قارچ ها ، ویروس ها و پرواوزوآها زندگی می کنند بطوریکه مجموع زنوم آنها بیش از ۱۰۰ بربر ژنوم میزبان می باشد. این مجموعه که تحت هنوان میکروبیوم نامیده می شود با تولید متابولیت های خود نقش مهمی در سلامت و بیماری انسان دارند. لذا هر گونه دستکاری خواسته و ناخواسته این محموعه تعادل بدن را به سمت سلامت بیشتر و یا بیماری هدایت می کند. در این سخنرانی از مجموعه فعالیت های علمی انجام شده در پژوهشکده زیست فناوری سازمان پژوهشهای علمی و صنعتی ایران مثالهایی در مورد استفاده از لاکتیک اسید باکتری ها برای تولید محصولات لبنی با خواص آنتی اکسیدانی ، ضد دیابت، ضد فشار خون ، ضد هلیکوباکتر پیلوری و آنتی ملانوژنز ارائه و مکانیسم عمل آنها را بر پایه تولید سینبیوتیک های لبنی ، پست بیوتیک ها و پیتیدهای زیست فعال حاصل از آنها در صنایع غذایی بحث خواهد شد. استفاده از مهار کننده های آلفا آمیلاز ، آلفا گلوکوزیداز ، تایروزیناز و ملکول های مهار کننده اتصال باکتری های یاتوژن به سلول های معده و روده بصورت پست بیوتیک و تولید شیر تخمیری حاوی سلول های با خواص فوق مورد ارزیابی قرار خواهد گرفت.

کلمات کلیدی: یروبیوتیک ، یست بیوتیک ، یروبیوتیک های نسل جدید ، مکانیسم

' 1023

14th & 15th May 2025 - Isfahan, Iran

Fermentation and Biotechnology: Innovative Pathways Toward Sustainability

Mehrdad Azin¹

¹ Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

Corresponding author: Mehrdad Azin (azin@irost.ir)

ABSTRACT

The lecture "Fermentation and Biotechnology: Innovative Pathways Toward Sustainability" discusses the importance of fermentation as a key tool for sustainability. The first part addresses the current state of fermentation. Fermentation is a biological process widely applied in various industries including food and beverage, pharmaceuticals, and the production of chemical and biological materials. The significant growth in the market for these products indicates the increasing importance of this industry, particularly in enhancing health and producing sustainable materials.

The second part is devoted to the future outlook of fermentation. The speaker refers to two fields, precision fermentation and synthetic biology, as novel technologies that enable the production of complex biological compounds and reduction of carbon emissions. Biorefineries are also introduced as a third approach, providing a sustainable solution for producing biofuels and valuable materials from biomass.

The lecture concludes with a call for international collaboration and investment in this industry, as well as encouragement for students and researchers to take advantage of research opportunities. The speaker's emphasis on the role of fermentation in addressing global challenges, such as climate change and energy security, highlights the importance of this field for a sustainable and innovative future.

Correspondence Office of Iranian Society of Microbial Science & Technology, Alzahra University, Tehran,

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

تخمیر و پیوتکنولوژی: مسیرهای نوآورانه به سوی پایداری

مهرداد آذين

' 1024

University

of Isfahan

سخنرانی «تخمیر و بیوتکنولوژی: مسیرهای نوآورانه به سوی پایداری»، اهمیت تخمیر بهعنوان یک ابزار کلیدی برای پایداری را مورد بحث قرار می دهد. در بخش اول، به وضعیت کنونی تخمیر پرداخته شده است. تخمیر، فرآیندی زیستی است که در صنایع مختلف از جمله غذا و نوشیدنی، داروسازی، و تولید مواد شیمیایی و زیستی کاربرد گسترده دارد. رشد چشمگیر بازار این محصولات نشان دهنده اهمیت روزافزون این صنعت است؛ بهویژه در ارتقاء سلامت و تولید مواد پایدار.

بخش دوم، به چشمانداز آینده تخمیر اختصاص دارد. سخنران به دو زمینه تخمیر دقیق و زیستشناسی مصنوعی به عنوان فناوریهای نوینی اشاره می کند که امکان تولید ترکیبات پیچیده زیستی و کاهش انتشار کربن را فراهم می کنند. زیست یالایشگاهها نیز به عنوان سومین رویکرد، راه حلی پایدار برای تولید سوختهای زیستی و مواد باارزش از زیست توده ها معرفی شدهاند.

این سخنرانی با دعوت به همکاری بینالمللی و سرمایه گذاری در این صنعت، همچنین تشویق دانشجویان و پژوهشگران برای بهرهبرداری از فرصتهای تحقیقاتی پایان می پذیرد. تأکید سخنران بر نقش تخمیر در حل چالشهای جهانی، مانند تغییرات اقلیمی و امنیت انرژی، نشان دهنده اهمیت این حوزه در آیندهای پایدار و نوآورانه است.

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1025

14th & 15th May 2025 - Isfahan, Iran

The Effect of Phage Therapy on Eukaryotic Cells and Especially the Immune System

Mahsa Soltani ¹, Ameneh Elikaei ^{1*}

1 Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

Corresponding author: Ameneh Elikaei (a.elikaei@alzahra.ac.ir)

ABSTRACT

Background: Bacteriophages, or phages, are viruses that infect bacteria specifically. More recently, with the increased concern of antibiotic-resistant infections, phages have been proposed as an alternative treatment to traditional antibiotics. Phage therapy utilizes the phages' normal lytic and lysogenic lifecycles to selectively infect and kill bacterial pathogens. The interaction of phages with eukaryotic cells, and more specifically, with immune cells has attracted much attention. This interaction can have notable effects on immune responses, demonstrating the healing potential of phages and the risks of their use.

Objective: Investigating the complex relationships between phages, eukaryotic host cells, and the immune system. Phage therapy effects on immune responses modulation, treatment outcomes improvement for antibiotic-resistant bacterial infections, and pharmacokinetics analysis of phages in the human body are examined, specifically.

Context: Phages are found in varied environments and assign a considerable portion of world genetic diversity to themselves. They have this ability to trigger heterogeneous immune responses in mammalian cells. Phages communicate with the immune system through pattern recognition receptors (PRRs), triggering innate and adaptive immunity. But there is danger in the interaction, such as phages are rapidly cleared by the immune system, and bacteria can become resistant to them. It is necessary to consider these dynamics in order to optimize phage therapy regimens and treatment efficacy.

Conclusion: Phages play diverse roles within the immune response to bacterial infection. roles in influencing eukaryotic systems. Understanding the complex interactions between phages, bacteria, and eukaryotic cells is essential for exploiting their therapeutic potential and addressing the challenges posed by antibiotic resistant infections. Continued research in this field will pave the way for innovative strategies in phage therapy and biotechnology, ultimately benefiting human health.

Keywords: Bacteriophage, Eukaryotic cells, Immune modulation, Host-pathogen interactions, Phage therapy

References:

- 1. Popescu, M., Van Belleghem, J. D., Khosravi, A., & Bollyky, P. L. (2021). Bacteriophages and the immune system. Annual review of virology, 8(1), 415-435.
- 2. Souza, E. B. D., Pinto, A. R., & Fongaro, G. (2023). Bacteriophages as potential clinical immune modulators. Microorganisms, 11(9), 2222.
- 3. Cieślik, M., Bagińska, N., Jończyk-Matysiak, E., Węgrzyn, A., Węgrzyn, G., & Górski, A. (2021). Temperate bacteriophages—The powerful indirect modulators of eukaryotic cells and immune functions. Viruses, 13(6), 1013.

Research Center For Natural & Biopharmaceutical Products

14th & 15th May 2025 - Isfahan, Iran

اثر فاژتراپی بر روی سلول های یوکاریوتی به ویژه سیستم سیستم ایمنی

مهسا سلطاني، آمنه اليكايي

' 1026

چکیده

پیشینه پژوهش: باکتریوفاژها یا فاژها، ویروس هایی هستند که به طور خاص باکتری ها را آلوده می کنند. اخیراً، با افزایش نگرانی از عفونت های مقاوم به آنتی بیوتیک، فاژها به عنوان یک درمان جایگزین برای آنتی بیوتیک های سنتی پیشنهاد شده اند. فاژ درمانی از چرخه زندگی لیتیک و لیزوژنیک طبیعی فاژها برای آلوده کردن و کشتن انتخابی پاتوژن های باکتریایی استفاده می کند. تعامل فاژها با سلول های یوکاریوتی و به طور خاص با سلول های ایمنی،در این زمینه بسیار قابل توجه است. این فعل و انفعال می تواند اثرات برجسته ای بر پاسخ های ایمنی داشته باشد، پتانسیل التیام فاژها و خطرات استفاده از آنها را نشان دهد.

هدف: بررسی روابط پیچیده ای که بین باکتریوفاژها، سلول های میزبان یوکاریوتی و سیستم ایمنی وجود دارد. به طور خاص، اثرات فاژ درمانی بر تعدیل پاسخهای ایمنی، بهبود نتایج درمان برای عفونتهای باکتریایی مقاوم به آنتیبیوتیک، و آنالیز فارماکوکینتیک فاژها در بدن انسان، مورد بررسی قرار میگیرد.

متن: فاژها در محیط های مختلف یافت می شوند و بخش قابل توجهی از تنوع ژنتیکی جهان را به خود اختصاص می دهند. آنها این توانایی را دارند که پاسخ های ایمنی ناهمگن را در سلول های پستانداران تحریک کنند. فاژها از طریق گیرنده های تشخیص الگو (PRR) با سیستم ایمنی ارتباط برقرار می کنند و باعث ایجاد ایمنی ذاتی و اکتسابی می شوند. اما در این تعامل خطری وجود دارد، به عنوان مثال فاژها به سرعت توسط سیستم ایمنی پاک می شوند و باکتری ها می توانند در برابر آنها مقاوم شوند. در نظر گرفتن این دینامیک ها به منظور بهینه سازی رژیم های فاژ تراپی و اثربخشی آن ضروری است.

نتیجه گیری: فاژها نقش های مختلفی را در پاسخ ایمنی به عفونت باکتریایی ایفا می کنند. درک روابط پیچیده بین فاژها، باکتری ها و سلول های یوکاریوتی برای بهره وری پتانسیل درمانی آنها و رسیدگی به چالش های ناشی از عفونت های مقاوم به آنتی بیوتیک ضروری است. ادامه تحقیقات در این زمینه، راه را برای راهبردهای نوآورانه در فاژ تراپی و بیوتکنولوژی هموار می کند که در نهایت به نفع سلامت انسان است.

کلمات کلیدی: باکتریوفاژ، سلول های یوکاریوتی، تعدیل ایمنی، تعاملات میزبان و پاتوژن، فاژتراپی

14th & 15th May 2025 - Isfahan, Iran

The Combination of Nanotechnology with Bioremediation for Fast and Efficient Degradation of Petroleum Hydrocarbons

' 1027

Davood Birya¹

¹ Department of Biotechnology, University of Isfahan, Isfahan, Iran

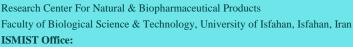
Corresponding author: Davood Birya (d.biria@ast.ui.ac.ir)

ABSTRACT

Petroleum contaminations that inevitably occur in the production, transportation and refining of the crude oil can be considered as a hazard to the environment which makes it necessary to be cleaned appropriately. Biological technologies, including bioremediation, have been developed as efficient, cost effective and environmentally friendly methods to address the problem. However, the slow kinetics of bioremediation in removing the petroleum hydrocarbons contaminations has been remained as a great challenge. Nanostructures can be employed to solve this challenge in several ways and improve the functionality of the microorganisms in biodegradation and removal of the petroleum hydrocarbons. We have studied three main mechanisms to intensify the bioremediation efficiency by the application of nano-structures. Firstly, the enzymatic activity of several metallic oxide nano-particles (nanozymes) has been used to convert and degrade the hydrocarbons to the products which can be degraded more conveniently by the microorganisms. The second effect can be summarized in the surface activity of certain types of nano particles which increases the hydrocarbon-aqueous phase interface area and facilitates the contact of microorganisms with the hydrocarbons leading to a higher hydrocarbons assimilation rate by the microorganisms. Finally, surface modified carbon nano tubes have been used as the nano-channels in the bacterial cell membrane to enhance the hydrocarbons uptake by the cells which improves the rate of hydrocarbons removal. It can be concluded that the synergistic mechanisms of nano-structures can help to overcome the shortcomings of bioremediation and introduce it as a fast and efficient method for treating the petroleum contaminations.

14th & 15th May 2025 – Isfahan, Iran

تلفیق نانوتکنولوژی با زیست پالایی برای تجزیه سریع و موثر هیدروکربنهای نفتی


داوود بی ریا

' 1028

چکیده

آلودگیهای نفتی که در فرایندهای تولید، انتقال و پالایش نفت خام به شکلی اجتناب ناپذیر ایجاد می شوند می توانند برای محیط زیست خطرناک باشند و لازم است به شکل مناسبی پاکسازی شوند. روشهای زیستی از جمله زیست پالایی به عنوان روشهایی کارآمد، مقرون به صرفه و دوستدار محیط زیست برای مقابله با این تهدید توسعه یافته اند. با این وجود سرعت پایین زیست پالایی برای مقابله با الودگی ناشی از هیدروکربنهای نفتی به عنوان یک چالش مهم در این زمینه باقی مانده است. استفاده از نانوساختارها می تواند به شکلهای مختلف به رفع این چالش کمک کند و عملکرد میکروارگانیسمها را در تجزیه و حذف آلودگیهای نفتی ارتقا بخشد. سه سازوکار مختلف برای تقویت زیست پالایی با کمک نانوساختارها مورد مطالعه قرار گرفته است. اول آن که برخی نانوذرات اکسید فلزی با فعالیت شبه آنزیمی به تبدیل و تجزیه هیدروکربنها کمک می کنند که این مساله باعث تسهیل مصرف آنها توسط میکروارگانیسمها می گردد. اثر دیگر نانوذرات را می توان در فعالیت سطحی برخی از این ساختارها خلاصه کرد که با افزایش سطح تماس موثر بین هیدروکربنها و سلولهای میکروبی فرایند جذب و تجزیه هیدروکربنها را تسریع می کنند. و در نهایت به کمک نانولوله های کربنی اصلاح سطحی شده می توان انتقال هیدروکربنها به داخل سلولهای میکروبی را از طریق ایجاد نانوکانالهایی تسریع و مدیریت کرد که این مساله باعث افزایش قابل ملاحظه سرعت حذف هیدروکربنها می شود. به این ترتیب اثر هم افزایی سازوکارهای نانویی می تواند نقاط ضعف فرایند زیست پالایی تا حد زیادی مرتفع گرداند و این روش را به عنوان یک روش موثر و سریع مطرح نماید.

14th & 15th May 2025 – Isfahan, Iran

Cell Free and Cell-Based Protein Expression Systems for Production of Recombinant Antioxidants

Azar Shahpiri¹

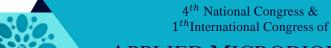
¹ Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Iran

' 1029

Corresponding author: Azar Shahpiri (a.shahpiri@iut.ac.ir)

ABSTRACT

Reactive oxygen species (ROS) play a significant role in various cellular signaling pathways. However, an imbalance in ROS levels due to environmental stresses such as drought, salinity, chilling, metal toxicity, UV-B radiation, and pathogen attacks can be extremely detrimental to organisms. This imbalance can lead to lipid peroxidation, protein oxidation, nucleic acid damage, inhibition of enzymes, and the activation of programmed cell death pathways. To combat these harmful effects, cells are equipped with an endogenous antioxidant defense system that includes both non-enzymatic and enzymatic antioxidants. The cloning of genes encoding enzymes involved in the thioredoxin reductase/thioredoxin system, the glutathione reductase/glutaredoxin system, and superoxide dismutase from plants and other organisms known for their tolerance to oxidative stress has enabled us to transfer these genes into expression hosts such as *Escherichia coli* or *Saccharomyces cerevisiae* to produce their recombinant forms. The functional characterization of these enzymes has led us to explore potential applications in the health, food, and feed industries, enhancing the ability to mitigate oxidative stress and improve the resilience of various organisms. Furthermore, we utilized cell-free protein expression as an efficient tool for expressing enzymes that are difficult to produce in cells. The regeneration of coenzymes in the cell-free system for metabolic pathways that produce non-enzymatic antioxidants is another aim of our research.



Research Center For Natural & Biopharmaceutical Products
Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran
ISMIST Office:

14th & 15th May 2025 - Isfahan, Iran

سیستمهای بیان پروتئین بدون سلول و مبتنی بر سلول برای تولید آنتیاکسیدانهای نوترکیب

آذر شاہ پیری

' 1030

چکیده

گونههای فعال اکسیژن (ROS) نقش مهمی در مسیرهای سیگنال دهی مختلف سلولی ایفا می کنند. با این حال، عدم تعادل در ROS به دلیل تنشهای محیطی مانند خشکی، شوری، سرما، سمیت فلزات، تابش UV و حملات پاتوژن می تواند برای موجودات بسیار مضر باشد. این عدم تعادل می تواند منجر به پراکسیداسیون لیپیدها، اکسیداسیون پروتئینها، آسیب به اسیدهای نوکلئیک، مهار آنزیمها و فعال سازی مسیرهای مرگ سلولی برنامه ریزی شده شود. برای مقابله با این اثرات مضر، سلولها به یک سیستم دفاعی آنتی اکسیدانی مجهز هستند که شامل آنتی اکسیدانهای غیر آنزیمی و آنزیمی میباشد. همسانه سازی ژنهای کدکننده آنزیمهای مرتبط با سیستمهای تیوردوکسین ردوکتاز /تیوردوکسین، گلوتاتیون ردوکتاز /گلوتاردوکسین و سوپر اکسید دیسموتاز از گیاهان و سایر موجودات شناخته شده متحمل به استرس اکسیداتیو، به ما این امکان را داد که این ژنها را به میزبانهای بیانی مانند گیاهان و سایر موجودات شناخته شده متحمل به استرس اکسیداتیو، به ما این امکان را داد که این ژنها را به میزبانهای بیانی مانند این آنزیمها مسیر را برای مطالعه کاربرد بالقوه این فراآورده های آنزیمی فراهم کرد. علاوه بر این، در این تحقیق از بیان پروتئین بدون سلول به عنوان ابزاری کارآمد برای بیان آنزیمهایی که تولید آنها در سلولها دشوار است، استفاده شد. بازسازی کوآنزیمها در سیستم بدون سلول به عنوان ابزاری کارآمد برای بیان آنزیمهایی که تولید آنها در سلولها دشوار است، استفاده شد. بازسازی کوآنزیمها سیستم بدون سلول بای مسیرهای متابولیکی که آنتی اکسیدانهای غیرآنزیمی تولید می کنند، هدف دیگری از تحقیقات ما می باشد.

Iranian society of Microbial Science & **Technology**

14th & 15th May 2025 - Isfahan, Iran

Phage therapy: A New approach in the treatment of antibiotic-resistant infections

Sharareh Moghim ¹

¹ Department of Bacteriology & Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

' 1031

Corresponding author: Sharareh Moghim (moghim@med.mui.ac.ir)

ABSTRACT

The global rise of antimicrobial resistance (AMR) has intensified the demand for innovative therapeutic approaches. Bacteriophage (phage) therapy, which employs viruses that specifically target and lyse bacterial pathogens, has re-emerged as a promising strategy, especially against multidrug-resistant (MDR) infections. Phages offer high host specificity, allowing for the targeted elimination of pathogens with minimal disruption to the commensal microbiota. Advances in genomics, molecular biology, and synthetic engineering have enabled the development of personalized phage cocktails tailored to patient-specific pathogens. Moreover, phage-antibiotic combination therapy has garnered increasing interest due to its potential to enhance antibacterial efficacy, prevent resistance development, and achieve synergistic or additive effects. Several preclinical and clinical studies have demonstrated the successful use of phageantibiotic regimens, particularly in cases where monotherapies have failed. Despite these encouraging results, challenges remain, including regulatory standardization, large-scale production, and comprehensive clinical validation. This review explores the therapeutic potential of phage therapy and phage-antibiotic combinations in the treatment of resistant bacterial infections and highlights the critical hurdles that must be overcome to facilitate their integration into mainstream clinical practice.

Keywords: Phage therapy, Antimicrobial resistance, combined phage-antibiotic treatment

Biopharmaceutical Products

14th & 15th May 2025 – Isfahan, Iran

فاژ درمانی : دیدگاهی جدید در درمان عفونت های مقاوم به درمان با آنتی بیوتیک

شراره مقيم

' 1032

چکیده

افزایش جهانی مقاومت میکروبی (AMR) نیاز به راهکارهای درمانی نوآورانه را بیش از پیش برجسته کرده است. درمان با باکتریوفاژ (فاژ)، که از ویروسهایی با توانایی اختصاصی در هدفگیری و لیز باکتریهای پاتوژن استفاده می کند، مجدداً بهعنوان رویکردی امیدبخش، بهویژه در مواجهه با عفونتهای مقاوم به چند دارو (MDR)، مورد توجه قرار گرفته است. فاژها با اختصاصیت بالای خود امکان حذف هدفمند پاتوژنها را فراهم میآورند، در حالی که آسیب کمتری به میکروبیوتای مفید وارد می کنند. پیشرفت در حوزههای ژنومیکس، زیستشناسی مولکولی و مهندسی سنتزی امکان طراحی ترکیبهای اختصاصی فاژ بر پایه پاتوژنهای خاص بیماران را فراهم ساخته است. افزون بر این، درمان ترکیبی فاژ—آنتیبیوتیک بهطور فزایندهای مورد توجه قرار گرفته، چرا که میتواند اثربخشی درمانی را افزایش داده، از بروز مقاومت جلوگیری کرده و اثرات همافزا یا افزایشی ایجاد کند. مطالعات پیشبالینی و بالینی متعددی اثربخشی این ترکیب را، بهویژه در مواردی که درمانهای تکعاملی موفق نبودهاند، نشان دادهاند. با وجود نتایج امیدوار کننده، چالشهایی از جمله استانداردسازی قانونی، تولید در مقیاس صنعتی، و اعتبارسنجی بالینی گسترده همچنان باقی است. این مرور به بررسی پتانسیل درمانی فاژ و ترکیبهای فاژ—آنتیبیوتیک در درمان عفونتهای مقاوم میپردازد و موانع کلیدی موجود در مسیر پذیرش گسترده آنها در عمل بالینی را تحلیل میکند.

کلید واژه ها: فاژ درمانی، مقاومت آنتی بیوتیکی، درمان توام فاژ- آنتی بیوتیک

Iranian society of Microbial Science & Technology

' 1033

14th & 15th May 2025 - Isfahan, Iran

Developments, Challenges and Perspectives of the Uranium Ore Microbial Leaching

Parisa Tajer-Mohammad-Ghazvini ¹

¹ Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

Corresponding author: Parisa Tajer-Mohammad-Ghazvini (ptajer@aeoi.org.ir)

ABSTRACT

Background: To ensure a safe and dependable supply of raw materials for industrial applications, it is essential to advance technologies that facilitate the effective extraction of valuable metals from mining deposits and tailings. With the awareness of the problems associated with traditional leaching methods, it has become of great importance to provide simple, efficient and less polluting methods for the processing and extraction of metals, including uranium. Therefore, the development of the uranium bioleaching process has attracted much attention.

Objective: The purpose of this research is to review the challenges and opportunities of microbial uranium leaching, with the intention of guiding further research efforts within the scientific community.

Results: The mesophilic acidophilic bacteria are the pioneers of the microbial leaching industry. The most important mesophilic microorganisms involved in bioleaching belong to the genus *Acidithiobacillus*. Microbial leaching is a biological process that is strongly influenced by biological, environmental, and physicochemical factors. Understanding these factors opens up new opportunities to improve the bioleaching rate of metals. The mechanism of mineral leaching by microorganisms is still complex. Today, the identification of indigenous microorganisms used in bioleaching experiments has provided excellent genetic data. These data can be used to improve bioleaching efficiency, reduce industrial costs. Future advances in genomic studies will overcome microbial limitations.

Conclusion: The emergence of microbial leaching technologies has compensated for the shortcomings of traditional uranium leaching technologies. However, these technologies still have great growth potential. In the meantime, screening and identifying new leaching microbial strains with better capabilities, including metal and salinity tolerance, will be an important area of research.

Keywords: Bacteria, Bioleaching, Metals Extraction, Uranium

References:

- 1. I. Christopher Nnaemeka *et al.*, "Examining the efficiency of microbe-assisted metal extraction: A review of bio-hydrometallurgical leaching techniques," *Hybrid Advances*, vol. 9, p. 100407, 2025/06/01/2025.
- 2. J. Nayak, S. *et al.*, "Advanced Bioseparation of Industrial Wastes: Sustainable Recovery of High-Value Metal Ions" *CRC Press*, 2024.
- 3. F. F. Roberto and A. Schippers, "Progress in bioleaching: part B, applications of microbial processes by the minerals industries," *Applied Microbiology Biotechnology*, vol. 106, no. 18, pp. 5913-5928, 2022.

Research Center For Natural & Biopharmaceutical Products

\$10.5

APPLIED MICROBIOLOGY

14th & 15th May 2025 - Isfahan, Iran

پیشرفت ها، چالش ها و چشم اندازهای فروشویی میکروبی کانسنگ اورانیوم

پريسا تاجرمحمد قزويني

چکیده

' 1034

پیشینه پژوهش: به منظور تا ٔمین پایدار و مطمئن مواد اولیه برای نیازهای صنعتی، لازم است که فناوری استخراج موفقیت آمیز فلزات باارزش از ذخایر معادن و باطلهها توسعه پیدا کند. با آگاهی از مشکلات مرتبط با روشهای سنتی فروشویی، ارائه روشهای ساده، کار آمد با آلودگی کمتر در فرآوری و استخراج فلزات از جمله اورانیوم از اهمیت بالایی برخوردار شده است. بنابراین امروزه توسعه فرایند فروشویی زیستی اورانیوم توجه زیادی را به خود جلب کرده است.

هدف: هدف این تحقیق، مروری بر چالشها و فرصتهای فروشویی میکروبی اورانیوم جهت فراهم شدن مسیرهایی برای تحقیقات بیشتر و توسط جامعه علمی است.

متن: باکتریهای اسیدوفیل مزوفیل پیشگامان صنعت فروشویی میکروبی هستند. مهمترین میکروارگانیسمهای مزوفیل دخیل در فروشویی زیستی است که به شدت تحت تاثیر فروشویی زیستی متعلق به جنس Acidithiobacillus هستند. فروشویی میکروبی یک فرایند زیستی است که به شدت تحت تاثیر عوامل زیستی، محیطی و فیزیکوشیمیایی قرار دارد. شناخت این عوامل فرصتهای جدیدی را برای بهبود نرخ فروشویی زیستی فلزات ایجاد میکند. مکانیسم شستشو مواد معدنی توسط میکروارگانیسمها هنوز پیچیده است. امروزه، شناخت میکروارگانیسمهای بومی مورد استفاده در آزمایشهای فروشویی زیستی دادههای ژنتیکی عالی را ارائه دادند. از این دادهها می توان برای بهبود کارایی فروشویی زیستی، کاهش هزینههای صنعتی استفاده کرد. پیشرفتهای آینده در مطالعات ژنومیک بر محدودیتهای میکروبی غلبه خواهد کرد.

نتیجه گیری: ظهور فناوریهای فروشویی میکروبی، کاستیهای فناوریهای سنتی فروشویی اورانیوم را جبران کرده است. با این حال، این فناوریها همچنان پتانسیل بالایی برای رشد دارند. در این میان، جستجو و شناسایی سویه های میکروبی فروشویی جدید با قابلیتهای بهتر ازجمله تحمل فلزات و شوری، یک حوزه مهم تحقیقاتی خواهد بود.

کلمات کلیدی: استخراج فلرات، اورانیوم، باکتری، فروشویی زیستی

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

Application of gamma ray irradiation for genetic modification of microbial biocontrol agents

Samira Shahbazi 1

¹ Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran

Corresponding author: Samira Shahbazi (sshahbazi@aeoi.org.ir)

ABSTRACT

Ionizing radiation such as gamma rays is produced by electromagnetic waves or particles emitted by excited nuclei of radioactive elements like cobalt-60. These rays can directly affect DNA and cause single/doublestranded breaks in the DNA molecule, which alters the genome. In addition, the absorption of radiation in the treated microbial cellsl leads to an ionization process and indirect interaction of photons with atoms and generating free radicals such as hydroxyl, which can combine with nucleic acid molecules. As a result, the effect of irradiated rays on microorganisms is primarily based on the disruption of DNA or RNA, leading to the prevention or destruction of cell proliferation or changes in the antagonistic properties of the microorganisms due to the alteration of the nucleic acid molecule. The chromosome size and the ability to repair nucleic acid damage, the dose of gamma radiation plays a crucial role in determining the radiosensitivity of microorganisms. The use of gamma rays has been found to improve various properties of biological agents, such as enhancing their antimicrobial activity, increasing their resilience to environmental stressors, and promoting their ability to colonize host plants. In the biological control, gamma rays have been used to modify the properties of Natural Biocontrol agents BCAs to improve the diseases control progtams in agrosystems. BCAs produce only trace levels of antimicrobial compounds. This is because they require these secondary metabolites for competitive advantage and do not overproduce them. Microorganisms have evolved regulatory systems that allow a strain to prevent overproduction of its metabolites. Hence, strain enhancement programmes are essential for commercial application. Several methods have been used to increase the efficacy of microbial BCAs, the induction of genetic mutations is one of the fastest and most effective methods for screening microorganisms and selecting strains with antagonistic potential. The results of this method can lead to an increase in antimicrobial metabolites, host colonization, and longer persistence in the micro-ecosystem. To improve the quality and efficiency of biocontrol agents, it is crucial to evaluate the specific characteristics of the microorganism, such as its radiosensitivity, its DNA repair capacity and its general metabolic activity. This approach accelerates the natural evolutionary process, providing a broader range of biocontrol traits in a shorter timeframe. Although the process is not entirely predictable, it has successfully led to beneficial mutations in *Trichoderma* (at gamma radiation doses under 0.25 kGy), Bacillus siamensis and B. subtilis (0.5-3.0 kGy), resulting in enhanced biocontrol properties. A beneficial feature of radiation exposure would be the ability of a microorganism to maintain its viability and continue to function effectively after treatment, while a detrimental feature would be increased susceptibility to DNA damage or impaired metabolic activity, which could affect its performance. The researches conducted in Nuclear Science and Technology Research Institute of Atomic Energy Organization of Iran revealed that gamma irradiation boosted Bacillus subtilis secondary metabolites and disease control abilitie, Trichoderma harzianum protease activity, Streptomyces antibiotic synthesis and Bacillus thuringiensis chitinase production.

Keywords: Micribizl biocontrol agents, gamma radiation, mutation.

Congress Address:

Research Center For Natural & Biopharmaceutical Products Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran

' 1035

University

of Isfahan

14th & 15th May 2025 - Isfahan, Iran

کاربرد پر توتابی با پر توگاما در اصلاح ژنتیکی عوامل بیوکنترل میکروبی

سميرا شهبازي

' 1036

چکیده

یر توهای یونیزان مانند پر تو گاما توسط امواج الکترومغناطیسی یا ذرات ساطع شده توسط هسته های برانگیخته عناصر رادیواکتیو مانند کبالت-۶۰ تولید می شود. این پرتوها می توانند مستقیماً بر روی DNA تأثیر بگذارند و باعث شکستگی های تک یا دو رشته ای در مولکول DNA و تغییر در ترادف ژنوم شوند. علاوه بر این، تیمار پرتوتایی در سلولهای میکرویی منجر به فرآیند یونیزاسیون و برهمکنش غیرمستقیم فوتون ها با اتمها و تولید رادیکالهای آزاد مانند هیدروکسیل می شود که می تواند با مولکول های اسید نوکلئیک ترکیب سلول شود. تأثیر پر توتایی بر میکروارگانیسم ها بر اساس تأثیر آنها در DNA یا RNA است که منجر به جلوگیری یا تخریب تکثیر سلولی یا تغییر در خواص آنتاگونیستی میکروارگانیسم ها به دلیل تغییر در مولکول اسید نوکلئیک آنها می شود. اندازه کروموزوم، توانایی ترمیم آسیب اسید نوکلئیک و در پرتوتایی با پرتو گاما نقش مهمی در تعیین حساسیت میکروار گانیسمها به یرتو دارد. استفاده از پرتوهای گاما برای بهبود خواص مختلف عوامل بیولوژیکی، مانند افزایش فعالیت ضد میکروبی، افزایش انعطاف پذیری آنها در برابر عوامل استرس زای محیطی و ارتقای توانایی کلنیزه گیاهان میزبان کاربرد دارد. در کنترل بیولوژیکی، از پرتوهای گاما برای اصلاح ژنتیکی BCAها و بهبود کارایی بیوکنترل بیماریها در اگروسیستم ها استفاده شده است. BCAها فقط سطوح کمی از ترکیبات ضد میکروبی تولید می کنند. آنها برای مزیت رقابتی به این متابولیت های ثانویه نیاز دارند، لذا آنها را بیش از حد تولید نمی کنند. میکروارگانیسم ها سیستم های تنظیمی تکامل یافته ای دارند که به یک سویه اجازه می دهد از تولید بیش از حد متابولیت های خود جلوگیری کند. از این رو، برنامه های افزایش متابولیتهای عوامل بیوکنترل برای کاربرد تجاری آنها ضروری است. روش های متعددی برای افزایش کارایی BCA های میکروبی استفاده شده است، القای جهش های ژنتیکی یکی از سریع ترین و موثر ترین روش ها برای غربالگری میکروارگانیسم ها و انتخاب سویه های با پتانسیل آنتاگونیستی است. نتایج این روش میتواند منجر به افزایش متابولیتهای ضد میکروبی، کلونیزاسیون میزبان و ماندگاری طولانی تر در اکوسیستم شود. برای بهبود کیفیت و کارایی عوامل کنترل زیستی، ارزیابی ویژگیهای خاص میکروارگانیسم، مانند حساسیت به برتو، ظرفیت ترمیم DNA و فعالیت متابولیک عمومی آن بسیار مهم است. این رویکرد روند تکامل طبیعی را تسریع می کند و طیف وسیعتری از صفات کنترل زیستی را در یک بازه زمانی کوتاهتر ارائه می کند. اگرچه این فرآیند کاملا قابل پیش بینی نیست، اما با موفقیت منجر به جهشهای مفید در تریکودرما (در دزهای زیر ۰.۲۵ کیلوگری) و باسیلوس سوبتیلیس و سیامنسیس و استرپتومایسیس دز دزهای (ش.۲۵-۰.۵)و بهبود خواص بیوکنترل در آنها شده است. یکی از مزایای اصلاح میکروبی با روش پرتوتابی، بهبود توانایی بیوکنترلی میکروارگانیسم و ارتقای عملکرد مؤثر پس از این تیمار است، در حالی که از معایب این روش امکان آسیب DNA یا اختلال در فعالیت متابولیک است. تحقیقات انجام شده در پژوهشگاه علوم و فناوری هسته ای، سازمان انرژی اتمی ایران، نشان داد که تابش گاما باعث افزایش متابولیت های ثانویه باسیلوس سوبتیلیس و توانایی کنترل بیماری، فعالیت پروتئاز در تریکودرما هارزیانوم و افزایش سنتز آنتی بیوتیک در استریتومایسس و تولید کیتیناز در باسیلوس تورینجینسیس می شود.

واژگان کلیدی: عوامل بیوکنترل میکروبی، پرتو گاما، جهش.

14th & 15th May 2025 - Isfahan, Iran

Downstream operations for manufacturing industrial bioproducts: challenges and achievements

Reza Jalalirad¹

¹ Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, IRAN

' 1037

Corresponding author: Reza Jalalirad (r jalalirad@pasteur.ac.ir)

ABSTRACT

Following cell cultivation in bioreactor, downstream processing results in the recovery and the purification of biosynthetic products. The host cell expressing the target biomolecule as well as the product location (extracellular or intracellular) and physical form (soluble or insoluble) have influenced the selection of sequence of downstream operation units. Downstream processing constitutes a critical step in manufacturing of biomolecules such as antibiotics, hormones, antibodies, variety of vaccines and enzymes considering product purity, cost, and environmental impact. This process includes bioseparation of cells, cell debris, cell disruption, bioseparation of product-related and process-related impurities. Typically, incorporation of different nonchromatographic techniques with chromatographic techniques throughout bioprocessing leads to eliminating numerous intermediate steps and producing a commercially viable method. However, downstream operations have always encountered serious challenges in the production line of each particular industrial bioproduct. Here certain examples of such challenges taken place during downstream processing steps are given and solutions and achievements for each particular case are discussed.

14th & 15th May 2025 - Isfahan, Iran

فرآیندهای پایین دستی تولید زیست فرآوردههای صنعتی: چالشها و موفقیتها

رضا جلالی راد

' 1038

University

of Isfahan

چکیده

بعد از کشت سلول در بایورآکتور، پردازش پایین دستی به بازیابی و خالص سازی محصولات بیوسنتزی منتج می شود. میزبان بیان کننده بیومولکول هدف و همچنین جایگاه (خارج سلولی یا داخل سلولی) و شکل فیزیکی فرآورده (محلول یا نامحلول) بر انتخاب و توالی مراحل فرآیند پاییندست تاثیر می گذارند. فرآوری پاییندستی با در نظر گرفتن خلوص محصول، هزینه و اثرات زیست معیطی، مرحلهای حیاتی در ساخت مولکولهای زیستی مانند آنتیبیوتیکها، هورمونها، آنتیبادیها، انواع واکسنها و آنزیمها را تشکیل می دهد. این فرآیند شامل جداسازی زیستی سلولها، بقایای سلولی، شکست سلولی و جداسازی ناخالصیهای مربوط به محصول و فرآیند است. به طور معمول، ادغام تکنیکهای مختلف غیر کروماتوگرافی با تکنیکهای کروماتوگرافی در طول پردازش زیستی منجر به حذف مراحل میانی متعدد و تولید یک روش تجاری قابل اجرا می شود. با این حال، عملیات پایین دستی همواره با چالش های جدی در خط تولید هر یک از محصولات زیستی صنعتی خاص مواجه بوده است. در اینجا نمونههای خاصی از چنین چالشهایی که جدی در طی مراحل پردازش پاییندست رخ دادهاند، ارائه می شوند و راه حلها و دستاوردها برای هر مورد خاص مورد بحث قرار می گیرند.

Research Center For Natural & Biopharmaceutical Products
Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran
ISMICT Office.

14th & 15th May 2025 - Isfahan, Iran

Phage cocktail reduces ciprofloxacin resistant Shigella infection by specific diminishing bacterial invasion, intercellular inactivation in human epithelial cells and modulate the inflammation response

' 1039

Khashayar Shahin¹

¹ Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China

Corresponding author: Khashayar Shahin (kh.shahin@ips.ac.cn)

Abstract

Bacteriophages are a new horizon in the antibiotic resistance era. While bacteriolytic effects and bilateral relationship of phage-bacterium is well studied, it remains poorly understood in the presence of eukaryotic cells. We aimed to make the inactivation of *Shigella* by a six phages cocktail in presence of epithelial cells. The cocktail was prepared during last years efforts and its specific highly potential have been approved in our last publications. The effect of specific lytic phages activity on Shigella is beyond a simple bacterial lysis. In general, Shigella invades the epithelial cells and induce intense inflammation. Then it penetrates the cells, spreads intracellularly and cause cell damage. The results showed that in response to adding bacteriophages, adhesion, invasion, and proliferation of Shigella to the epithelial cell significantly, in particular, when epithelial cells were preincubated with bacteriophage prior to Shigella inoculation. The outer membrane vesicles (OMV) produced by the lysis of Shigella were effectively neutralized due to phage attachment to, increasing the survival rate of epithelial cells by 50%. Phage-to-bacteria ratios significantly increased two and four folds, respectively when extracellular or intracellular populations of *Shigella* were lysed, respectively. Attachment to Shigella's type 3 secretion system (T3SS) was determined as the mechanism behind bacteriophage-mediated attenuation of Shigella invasion to epithelial cells. Transcriptomics showed phages successfully modulated the typical signaling pathways associated with responses to bacteria, OMV, and expression and secretion of inflammatory cytokines. The phages fight against ciprofloxacin resistant Shigella while having no effects on healthy gut microbiota based on proteomics and metataxonomic approaches. All taken together, the recent research demonstrated the interaction of phages, bacteria and eukaryotic cell deeper than before and lighted up the shadow in the field of phage therapy.

\$10.5°

APPLIED MICROBIOLOGY

14th & 15th May 2025 - Isfahan, Iran

کوکتل فاژ در کاهش عفونت شیگلا مقاوم به سیپروفلوکساسین از طریق کاهش اختصاصی تهاجم باکتری، غیر فعال

کردن درون سلولی در سلولهای اپیتلیال انسانی و تنظیم پاسخ التهابی

خشايار شاهين

' 1040

چکیده

باکتریوفاژها افقی نوین در دوران مقاومت آنتیبیوتیکی هستند. در حالی که اثرات باکتریولیتیک و رابطه دوطرفه فاژباکتری به خوبی مورد مطالعه قرار گرفته است، این ارتباط در حضور سلولهای یوکاریوتی به خوبی شناخته نشده است. هدف ما ایجاد غیر فعالسازی شیگلا توسط کوکتل شش فاژ در حضور سلولهای اپیتلیال بود. این کوکتل در سالهای اخیر تهیه شده و پتانسیل بسیار بالای اختصاصی آن در مقالات قبلی مان اثبات شده است. اثر فعالیت فاژهای لیتیک اختصاصی روی شیگلا فراتر از یک لیز ساده باکتریایی است. به طور کلی، شیگلا سلولهای اپیتلیال را تهاجم می کند و التهاب شدیدی ایجاد می کند. سپس وارد سلولها شده، درون سلولی گسترش می یابد و باعث آسیب سلولی می شود. نتایج نشان داد که در پاسخ به اضافه کردن باکتریوفاژها، چسبندگی، تهاجم و تکثیر شیگلا به سلول اپیتلیال به طور معناداری کاهش یافت، به ویژه زمانی که سلولهای اپیتلیال قبل از تلقیح شیگلا با باکتریوفاژ پیشانکوبه شده بودند. وزیکولهای غشایی خارجی (OMV) تولید شده توسط لیز شیگلا به طور مؤثری به دلیل اتصال فاژها خنثی شدند که منجر به افزایش نرخ بقا سلولهای اپیتلیال تا ۵۰٪ شد. نسبت فاژ به باکتری به طور معناداری دو و چهار برابر افزایش یافت، به ترتیب هنگامی که جمعیتهای خارج سلولهای اپیتلیال توسط باکتریوفاژها تعیین شد. تحلیلهای ترانسکریپتومیک نشان داد فاژها عنوان مکانیزم کاهش تهاجم شیگلا به سلولهای اپیتلیال توسط باکتریوفاژها تعیین شد. تحلیلهای ترانسکریپتومیک نشان داد فاژها مسیرهای سیگنال دهی معمول مرتبط با پاسخ به باکتری، OMVو بیان و ترشح سایتوکاینهای التهابی را با موفقیت تنظیم کردند. مروتئومیک و متاتاکسونومیک. مجموع این تحقیقات جدید تعامل فاژها، باکتریها و سلولهای یوکاریوتی را عمیق تر از قبل نشان داد و روروشنایی بخشید به حوزه درمان با فاژها.

14th & 15th May 2025 - Isfahan, Iran

Potential Antimicrobial Mechanisms of Plant EVs: A meta-Analysis Study

Razieh Dalirfardouei

1 Department of Medical Biotechnology, School of Sciences and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

' 1041

Corresponding author: Razieh Dalirfardouei (r.dalir@umsha.ac.ir)

ABSTRACT

Background: Nanovesicles naturally derived from plants and medicinal herbs are attracting considerable interest in the medical and pharmaceutical field due to straightforward and efficient scaling-up methods for isolation. Plant extracellular vesicles (PEVs) can successfully transfer their bioactive molecules cargo between cells and organisms, creating inter-kingdom communication and contributing to diverse biological processes, such as antimicrobial properties. Notably, Gut microbiota can absorb the plant miRNAs encapsulated in plant EVs.

Objective: The aim of this study is an integrative analysis of PEV cargoes to uncover the molecular mechanisms behind their antimicrobial effects.

Methods: Proteomic and miRNA profiles of extracellular vesicles from different plants were achieved by searching literature and GEO databases. The STRING software was applied to provide a functional biological network, which was then visualized using Cytoscape 3.7.1. The Molecular Complex Detection (MCODE) Cytoscape plugin was used to analyze the network and find significant biological clusters. Functional enrichment and gene ontology (GO) analysis were performed using g:profiler.

Results: The shared common proteins were associated with an antimicrobial-related process such as "Response to oxidative stress", "Protein folding and chaperone activity", "Lipid metabolism and oxidation", and "Carotenoid and sterol metabolism", supporting that EV from plants was expected to positively impact on infectious disease.

Conclusion: This integrative analysis highlights the crucial roles of biocargoes in plant extracellular vesicles in antimicrobial defense. These insights could lead to innovative approaches for reshaping the natural microbiota to treat various diseases.

Keywords: Plant nanovesicles, Mechanism, Chaperone, Bioactive compounds

Iranian society of University Microbial Science & of Isfahan Technology

14th & 15th May 2025 - Isfahan, Iran

مكانيسم هاى احتمالي اثرات ضد ميكروبي وزيكول هاى خارج سلولي گياهان: يك مطالعه متاآناليز

راضيه دليرفردوئي

' 1042

چکیده

پیشینه پژوهش: نانووزیکولهای گیاهی به دلیل روش جداسازی آسان و مقرون به صرفه و افزایش حجم تولید ساده، در پزشکی و صنایع داروسازی بسیار مورد توجه قرار گرفتهاند. این وزیکولهای خارج سلولی گیاهی (PEVs)حاوی ماکرومولکولهای زیستی هستند و میتوانند این مواد زیستی فعال را به سلولهای انسانی و یا میکروارگانیسمها انتقال دهند و بهعبارتی ارتباطات بین سلسلههای مختلف موجودات را رقم میزنند. تاکنون، فعالیتهای زیستی مختلفی نظیر فعالیت ضدمیکروبی و ضدالتهابی آنها گزارش شدهاست. ترکیب میکروارگانیسمهای روده با جذب مستقیم ترکیبات PEV مانند miRNA تغییر می کند.

هدف: هدف از این مطالعه پیدا کردن مکانیسمهای مولکولی اثرات ضدمیکروبی PEVs ها از طریق آنالیز جامع پروفایل بیانی آنها

روشها: پروفایل پروتئینی و miRNA وزیکولهای خارج سلولی گیاهی، با جستجو در مقالات علمی و پایگاه داده GEO استخراج شد. با استفاده از ابزار STRING شبکه عملکردی زیستی رسم شد و با نرم افزار Cytoscape 3.7.1 بررسی شد. خوشه،های زیستی معنی دار با استفاده از MCODE ارزیابی شد. در نهایت با استفاده از gene ontology بررسی های gene ontology تکمیل شد.

نتایج: سازوکارهای زیستی ضد میکروبی که پروتئینهای مشترک دادههای مختلف در آن نقش داشتند عبارت از "تاخوردن يروتئينها و فعاليت چيرون"، "متابوليسم و اكسيداسيون لييد"، "متابوليسم كاروتنوئيد و استرول" مي باشد كه نشان مي دهد PEV بالقوه توانایی ایجاد اثرات مثبت در بیماریهای عفونی را دارد.

نتیجه گیری: نتایج این مطالعه متاآنالیز نشان داد که ترکیبات فعال پستی PEV، از طریق مکانیسمهای متعددی تاثیر ضدمیکرویی خود را بروز میدهند. بنابراین، PEVs راهکارهای ایمن، خلاق و ارزان برای تغییر میکروبیوم روده و یا پوست جهت درمان بیماریهای مختلف معرفي ميشوند.

کلیدواژه: نانووزیکولهای گیاهی، مکانیسم، چپرون، ترکیبات فعال زیستی

Biopharmaceutical Products

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1043

14th & 15th May 2025 - Isfahan, Iran

Evaluation of antiviral effect of *Helianthus tuberosus* extract on Herpes simplex virus type 1

Taravat Mohammadalizade Amiri 1*, Fatemeh Roodbari 1, Sadegh Pourmoradi 3

¹ MSc in Biology, University of Mazandaran, Iran.

³ Agricultural and Natural Resources Research Center of Mazandaran, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran

Corresponding Author: Taravat Mohammadalizade Amiri (taravatalizadeh11@gmail.com)

ABSTRACT

Background: Human herpes simplex virus type 1 (HSV-1) commonly causes infections in the skin, mucosa, and nervous system. Plant extracts are being explored as alternative therapies because they tend to have antiviral effects with fewer side effects. Helianthus tuberosus (Jerusalem artichoke), which contains phenolic compounds, coumarins, and sesquiterpenes, shows promise due to its antiviral and antioxidant properties.

Objective: In the present study, the antiviral effect of Helianthus tuberosus plant extract on herpes simplex virus type 1 was investigated.

Materials and Methods: For this purpose, methanol extract of aerial parts of *H. tuberosus* was prepared by soaking in 80% methanol. The cytotoxic effect of different concentrations of the extract on Vero cells was evaluated using the MTT method, viral titer was determined using the 50 TCID method, and the inhibitory effect of the extract on herpes simplex virus type 1 in two extracellular stages: attachment and intracellular; proliferation using the CPE and MTT methods. The data were analyzed with Minitab statistical software (version 16). The 50 CC values were 60.41 and 57.142 at 48 and 72 hours, respectively. The highest viral inhibition effect was related to the replication stage, and the best time in this stage was 48 hours with a virus inhibition rate (50IC) of 871/381 μg/ml and a SI value of 0.069. At 72 hours, the 50 IC was 391.46 μg/ml and a SI value of 1.231. In the binding stage, the inhibitory effect of the extract on the HSV-1 virus was observed at concentrations of 25.31-62.5-125-250 μg/ml.

Results: The results showed that the methanol extract of H.tuberosus at concentrations of $1000 \mu g/ml$ and $500 \mu g/ml$ had a lethal effect on Vero cells. The highest antiviral effect of the extract was in the viral replication stage. Further research is needed to find the mechanism of action so that it can be used in the manufacture of antiherpes drugs.

Conclusion: The methanolic extract of *Helianthus tuberosus* demonstrated significant antiviral effects against HSV-1, particularly in the replication stage. Further research is recommended to elucidate the mechanism of action and explore the potential of this plant as a natural antiviral agent.

Keywords: *Helianthus tuberosus*, Vero cell line, herpes simplex virus type 1, antiviral properties.

References:

- 1. Chen,F, Long,X, Liu,Zh, Shao,H,Lio,L.(2014). Analysis of Phenolic Acids of Jerusalem Artichoke(Helianthus tuberosus L.) Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry. The Scientific World Journal.
- 2. Del Barrio, G., Parra, F. (2006). Evaluation of the Antiviral Activity of an Aqueous Extract from Phyllanthus Orbicularis. Journal of Ethnopharmacology, 72(1), 317-322.
- 3. Dobson, C. B., Itzhaki, R. F. (1999). Herpes Simplex Virus Type 1 and AlzheimerG-s Disease. Journal of Neurobiology of Aging, 20, 457-465.

14th & 15th May 2025 - Isfahan, Iran

بررسی اثر ضد ویروسی عصاره گیاهی Helianthus tuberosus بر ویروس هرپس سیمپلکس تیپ۱

طراوت محمدعلی زاده امیری، فاطمه رودباری، صادق پورمرادی

چکیده

' 1044

پیشینه پژوهش: ویروس هرپس سیمپلکس انسانی نوع ۱ (HSV-1) معمولاً باعث عفونت در پوست، مخاط و سیستم عصبی می شود. عصارههای گیاهی به عنوان درمانهای جایگزین مورد بررسی قرار می گیرند زیرا تمایل به داشتن اثرات ضد ویروسی با عوارض جانبی کمتر دارند Helianthus tuberosus .(کنگر فرنگی اورشلیم) که حاوی ترکیبات فنلی، کومارینها و سزکوئی ترپنها است، به دلیل خواص ضد ویروسی و آنتی اکسیدانی خود نویدبخش نشان می دهد.

هدف: در مطالعه حاضر، اثر ضد ویروسی عصاره گیاه Helianthus tuberosus برای این منظور، عصاره متانولی قسمتهای هوایی H. tuberosus با خیساندن در متانول ۸۰٪ تهیه شد. اثر سیتوتوکسیک غلظتهای مختلف عصاره بر روی سلولهای Vero با استفاده از روش MTT ارزیابی شد، تیتر ویروسی با استفاده از روش کی غلظتهای مختلف عصاره بر روی سلولهای Vero با استفاده از روش ۱۰۵ TCID50 مد تعیین شد و اثر مهاری عصاره بر روی ویروس هرپس سیمپلکس نوع ۱ در دو مرحله خارج سلولی: اتصال و داخل سلولی؛ تکثیر با استفاده از روشهای CPE و MTT انجام شد. دادهها با نرمافزار آماری Minitab (نسخه ۱۶) تجزیه و تحلیل داخل سلولی؛ تکثیر با استفاده از روشهای ۴۰ (۲۰۰۱ و ۲۰۰۲ بود. بیشترین اثر مهار ویروسی مربوط به مرحله تکثیر بود و بهترین زمان در این مرحله ۴۸ ساعت با میزان مهار ویروس) ۵۰ (۳۸۱/۸۷۱۱C میکروگرم در میلیلیتر و مقدار ۲۵ (۲۵ میکروگرم در میلیلیتر و مقدار ۲۲ (۲۳ میکروگرم در میلیلیتر و مقدار ۲۲ میکروگرم در میلیلیتر و مقدار ۲۳ میکروگرم در میلیلیتر و مقدار ۲۵ (۲۳ میکروگرم در میلیلیتر مشاهده شد. نتایج: نتایج نشان داد که عصاره متانولی گیاه ۲۰ در غلظتهای ۱۰۰۰ میکروگرم بر میلیلیتر و ۵۰۰ میکروگرم بر میلیلیتر اثر کشندگی بر روی سلولهای Vero داشت. ۱۰ در غلظتهای ۱۰۰۰ میکروگرم بر میلیلیتر و در مرحله اتمال اثر مورد نیاز است تا بتوان بیشترین اثر ضد ویروسی عصاره در مرحله تکثیر ویروس بود. تحقیقات بیشتری برای یافتن مکانیسم عمل آن مورد نیاز است تا بتوان بیشترین اثر ضد ویروهی ضده هرپس استفاده کرد.

نتیجه گیری: عصاره متانولی H. tuberosus اثرات ضد ویروسی قابل توجهی را علیه HSV-1، به ویژه در مرحله تکثیر، نشان داد. تحقیقات بیشتر برای روشن شدن مکانیسم عمل و بررسی پتانسیل این گیاه به عنوان یک عامل ضد ویروسی طبیعی توصیه می شود. کلمات کلیدی: Helianthus tuberosus، رده سلولی Vero، ویروس هریس سیمپلکس نوع ۱، خواص ضد ویروسی.

Iranian society of Microbial Science & Technology

' 1045

14th & 15th May 2025 - Isfahan, Iran

(04890269)-Investigation of *Acetobacter senegalensis* LMG 23690T effect on modulation of antiinflammatory response in a rat model

Shima Bahador ¹; Rasoul Shafiei ¹; Maryam Noorbakhshnia ¹; Babak Beikzadeh ¹; Parvin Mahzouni ²

- 1 Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- 2 Department of Pathology, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondent email: Rasoul Shafiei (r.shafiei@sci.ui.ac.ir)

ABSTRACT

Background: Inflammation is the immune system's response to harmful stimuli, such as pathogens, damaged cells, toxic compounds, or irradiation (1). However, uncontrolled acute inflammation may become chronic, contributing to a variety of chronic inflammatory diseases (2, 3).

Objective: The main idea of the current study was to evaluate the anti-inflammatory activity of *Acetobacter senegalensis*.

Context: into 4 groups: G1 (treated with physiological serum; negative control), G2 (treated with *Escherichia coli* O55; positive control), G3 (treated with *A. senegalensis*; test group), G4 (treated with *A. senegalensis* + *E. coli*; prevention group). Rats were gavaged with 10⁹ CFU/ml of bacteria for 60 days. Then, rats were sacrificed and biochemical and immunological studies were performed.

Results: Our results revealed that the concentration of Aspartate transaminase (AST) and Aspartate transaminase /Alanine transaminase (AST/ALT) were increased significantly (P<0.05) in G2 treated with *E. coli*. However, in group G3 there was no significant increase in AST and AST/ALT ratio. In the presence of *A. senegalensis* (G4) AST and AST/ALT decreased remarkably (P<0.05). Furthermore, serum level of urea and creatinine was elevated in G2 and reduced in G4. In addition, no significant increase in serum level of urea and creatinine was found in group G3. Also, immunological studies on hippocampus tissue of rats suggested that production of Tumor necrosis factor (TNF- α) was increased significantly (P<0.05) in G2. While, in G4 rats TNF- α concentration was decreased notably (P<0.05) and there was no significant increase in TNF- α level in group G3. **Conclusion:** Increased levels of AST and AST/ALT are related with liver dysfunction. As well, increased levels of urea and creatinine are associated with kidney dysfunction. Therefore, decreased level of AST, AST/ALT, urea, creatinine and TNF- α in the presence of *A. senegalensis* confirmed its anti-inflammatory activity.

Keywords: Acetobacter senegalensis, Anti-inflammatory activity, Immune response , liver dysfunction, Tumor necrosis factor $(TNF-\alpha)$

References:

- 1. Rohm, T. V., Meier, D. T., Olefsky, J. M., & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. *Immunity*, 55(1), 31-55.
- 2. Massironi, S., Viganò, C., Palermo, A., Pirola, L., Mulinacci, G., Allocca, M., ... & Danese, S. (2023). Inflammation and malnutrition in inflammatory bowel disease. *The Lancet Gastroenterology & Hepatology*, 8(6), 579-590.
- 3. Ma, Z., Du, B., Li, J., Yang, Y., & Zhu, F. (2021). An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: A review of both in vivo and in vitro investigations. *International Journal of Molecular Sciences*, 22(20), 11076.

Research Center For Natural & Biopharmaceutical Products

14th & 15th May 2025 - Isfahan, Iran

۰۴۸۹۰۲۶۹ بررسی اثر استوباکتر سنگالنسیس LMG 23690T در تعدیل پاسخ ضد التهابی در یک مدل رت

شیما بهادر، رسول شفیعی، مریم نوربخش نیا، بابک بیک زاده، پروین محزونی

چکیده

' 1046

پیشینه پژوهش: التهاب پاسخ سیستم ایمنی به محرکهای مضر مانند پاتوژنها، سلولهای آسیب دیده، ترکیبات سمی یا تابشهای خطرناک است (۱). با این وجود، التهاب حاد کنترل نشده میتواند به صورت مزمن درآمده و به انواع بیماریهای التهابی مزمن منجر شود (۲، ۳).

هدف: هدف اصلى اين مطالعه بررسى فعاليت ضد التهابي استوباكتر سنگالنسيس بود.

روشها: برای این منظور، یک مطالعه in-vivo با استفاده از مدل رت انجام شد. در این مطالعه از ۴۰ رت استفاده شد. رتها به ۴ گروه تقسیم شدند: G1 (تیمار شده با اسرم فیزیولوژی؛ کنترل منفی)، G2 (تیمار شده با استوباکتر سنگالنسیس + اشرشیا کلی ؛ گروه پیشگیری). (تیمار شده با استوباکتر سنگالنسیس + اشرشیا کلی ؛ گروه پیشگیری). رتها با غلظت 10° CFU/ml از هر دو باکتری به مدت ۶۰ روز گاواژ شدند. سپس رتها کشته شده و مطالعات بیوشیمیایی و ایمونولوژیک روی آنها انجام شد.

inling inling

نتیجه گیری: افزایش سطح AST و نسبت AST/ALT با نارسایی کبد همراه است. همچتین افزایش سطح اوره و کراتینین منجر به نارسایی کلیه می شود. بنابراین، کاهش سطوح AST، نسبت AST/ALT، اوره، کراتینین و α -TNF نشان دهنده فعالیت ضد التهابی *استوباکتر سنگالنسیس* است.

کلیدواژه: استوباکتری سنگالنسیس، فعالیت ضدالتهابی، پاسخ ایمنی، نارسایی کبدی، فاکتور نکروز دهنده تومور (TNF-α)

14th & 15th May 2025 - Isfahan, Iran

(09070718)-The Significance of Probiotics in the Transmission of Antimicrobial Resistance Genes

Bahareh Attaran¹

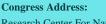
¹ Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

' 1047

Corresponding Email: Bahareh Attaran (b.attaran@alzahra.ac,ir)

ABSTRACT

Background: Probiotics' antibiotic resistance raises significant health issues since these good bacteria can spread antibiotic resistance genes. Especially for pathogens, the possibility of horizontal gene transfer from probiotics to other gut bacteria is a major worry since it could lead to treatment-resistant illnesses. This route could aggravate the worldwide issue of antibiotic resistance, hence raising hospital death and morbidity rates.


Objective: Human antibiotic resistance is linked to animal probiotics influencing the food chain. Studies indicate that commercial probiotic products contain antibiotic-resistance genes, therefore highlighting the need of carefully screening probiotic strains.

Context: Recent studies have shown that certain probiotic bacteria, particularly those belonging to the genera Lactobacillus, Bifidobacterium, Enterococcus, and Bacillus, frequently carry genes that resist antibiotics. Mobile genetic elements help to spread antibiotic-resistant genes among different bacteria, hence aggravating resistance issues. Common antibiotic resistance genes are the glycopeptide resistance gene (vanE), aminoglycoside resistance genes (aadA, strA, strB), macrolide resistance genes (msrA/msrB, erm(B)), and tetracycline resistance genes (tet(K), tet(M), tet(S), tet(W)). These genes, located on mobile genetic elements mostly found in Lactobacillus and Bifidobacterium species, help to spread them across other

Current screening rules poorly handle mobile ARGs in commercial probiotics, therefore stressing the need of genetic monitoring to lower health concerns connected to antibiotic resistance.

Keywords: Probiotics, antibiotic resistance genes, horizontal gene transfer, antibiotic resistance **References:**

- 1. Hofer, U. (2022). Mobilizing resistance genes in the human gut. *Nature Reviews Microbiology*, 20(6), 317. https://doi.org/10.1038/s41579-022-00728-72. Jiang, S., Zhang, C., Han, Z., Ma, W., Wang, S., Huo, D., Cui, W., Zhai, Q., Huang, S., & Zhang, J. (2023). Native microbiome dominates over host factors in shaping the probiotic genetic evolution in the gut. Npj Biofilms and Microbiomes, 9(1). https://doi.org/10.1038/s41522-023-00447-8
- 3. Montassier, E., Valdés-Mas, R., Batard, E., Zmora, N., Dori-Bachash, M., Suez, J., & Elinav, E. (2021). Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nature Microbiology, 6(8), 1043–1054. https://doi.org/10.1038/s41564-021-00920-0

14th & 15th May 2025 - Isfahan, Iran

۰۹۰۷۰۷۱۸ اهمیت پروبیوتیکها در انتقال ژنهای مقاومت آنتیمیکروبی

بهاره عطاران

حكىدە

' 1048

پیشینه پژوهش: مقاومت آنتی بیوتیکی پروبیوتیکها نگرانیهای بهداشتی قابل توجهی را ایجاد می کند، زیرا این باکتریهای مفید میتوانند ژنهای مقاومت آنتیبیوتیکی را انتقال کنند. یکی از نگرانیهای عمده، پتانسیل انتقال افقی ژن از پروبیوتیکها به سایر باکتریهای روده، از جمله پاتوژنها، است که میتواند بیماریهای مقاوم به درمان ایجاد کند. این مسیر مشکل جهانی مقاومت آنتی بیوتیکی را تشدید می کند و در نتیجه نرخ مرگ و میر و بیماری را در بیمارستانها افزایش دهد.

هدف: پروبیوتیکهای دامی که بر زنجیره غذایی تأثیر می گذارند، این مشکل را دارند و با مقاومت آنتی بیوتیکی در انسانها مرتبط بودهاند. مطالعات نشان می دهند که محصولات پروبیوتیک تجاری شامل ژنهای مقاومت آنتی بیوتیکی هستند، که بر لزوم غربالگری دقیق سویههای پروبیوتیک تأکید میکند.

نتایج: تحقیقات اخیر نشان میدهد که برخی از سویههای پروبیوتیک به ویژه آنهایی که از جنسهای لاکتوباسیلوس، بیفیدیوباکتریوم، انتروکوکوس و باسیلوس هستند، اغلب دارای ژنهای مقاومت آنتیبیوتیکی هستند. اجزای ژنتیکی متحرک به این ژنهای مقاومت آنتی بیوتیکی کمک می کنند تا به باکتریهای مختلف منتقل شوند و مشکلات مقاومت را افزایش دهند. ژنهای مقاومت آنتی بیوتیکی رایج شامل ژن مقاومت گلیکوپیتید (vanE)، ژنهای مقاومت آمینو گلیکوزید (aadA, strA, strB)، ژنهای مقاومت ماكروليد (msrA/msrB, erm(B)) و ژنهاي مقاومت تتراسايكلين (tet(S), tet(W) ،tet(K), tet(M)) مي باشند. اين ژنها که بر روی عناصر ژنتیکی متحرک که عمدتاً در گونههای لاکتوباسیلوس و بیفیدوباکتریوم یافت میشوند، قرار دارند، که انتشار آنها را در میان باکتریها تسهیل می کنند.

نتیجه گیری: قوانین فعلی غربالگری این ژن های مقاومت آنتی بیوتیکی متحرک را در پروبیوتیکهای تجاری به طور کافی پوشش نمی دهند، و اهمیت نظارت ژنومی برای کاهش خطرات احتمالی بهداشتی مرتبط با مقاومت آنتی بیوتیکی تأکید می کنند.

کلیدواژه: پروبیوتیک ها، ژن های مقاومت آنتی بیوتیکی، انتقال افقی ژن ها، مقاومت آنتی بیوتیکی

Congress Address:

Biopharmaceutical Products

Iranian society of Microbial Science & **Technology**

14th & 15th May 2025 - Isfahan, Iran

(04390243)-Studying the effect of physiological conditions (light and temperature) on the production and herbicidal properties of the siderophore produced by a rare actinomycete, Amycolatopsis lorida

Mahsa Eigharlou¹, Akram Sadeghi², Ali Mohammadi³

' 1049

1 Department of Microbiology, School of Biology, College of Science, Tehran, University of Tehran, Iran 2 Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran 3 Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

Coresspondence email: Akram Sadeghi (aksadeghi@abrii.ac.ir)

ABSTRACT

Background: Sugarcane syrup, due to its high sugar concentration and low water activity, creates an ideal environment for the growth of osmophilic microorganisms—especially certain yeast species. Among these, osmophilic yeasts can thrive and multiply, leading to microbial contamination. Such contamination results in turbidity, off-flavors, and reduced shelf life, severely compromising the quality of the final product. These quality issues render the syrup unsuitable for industrial applications, particularly in food and beverage production, where clarity and microbial stability are critical. Therefore, identifying and controlling the main microbial contaminants is essential to improving product stability and safety.

Objective: This study examined the herbicidal potential of *Amycolatopsis lurida* strain 407 siderophores and their metabolites in two colony morphologies this study aimed to elucidate the relationship between siderophore production and plant growth inhibition.

Methods: The study examined two colony types (red and white) of A. lurida strain 407 for herbicidal activity under varying conditions. Both colony filtrates significantly inhibited ryegrass and redroot growth. Siderophore production was higher in the red strain (613.4 ppm) than in the white (388.5 ppm). Chromatographic fractions showed strong suppression of weed growth, particularly those with ironchelating activity. The results suggest A. lurida siderophores have strong bioherbicidal potential and could be eco-friendly alternatives to chemical herbicides.

Conclusion: These findings indicate that siderophores from A. lurida 407 have herbicidal properties and may serve as an environmentally sustainable alternative to chemical herbicides. This study highlights the potential of siderophores, alone or in combination with other metabolites, to suppress weed growth and promote sustainable agricultural practices.

Keywords: Amycolatopsis lurida, Chromatography, Siderophores

References:

- 1. Eigharlou, M., Javidpoor, S., Mohammadi, A., Khelghatibana, F., Nami, Y., Ma'mani, L., & Sadeghi, A. (2024). Evaluation of herbicidal potential of Siderophores produced by Amycolatopsis lurida strain 407. Scientific Reports, 14(1), 26212.
- 2. Wang, W., Qiu, Z., Tan, H., & Cao, L. (2014). Siderophore production by actinobacteria. Biometals, 27, 623-631.
- 3. Roman, I., & Gromyko, O. (2023). Plant growth promoting properties of an antarctic strain Amycolatopsis sp. Cq 72-27. Ukrainian Antarctic Journal, 21(1 (26)), 79-89.

Research Center For Natural & Biopharmaceutical Products Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran

Research Center For Natural & Biopharmaceutical Products

14th & 15th May 2025 - Isfahan, Iran

(04390243) -بررسی تاثیر شرایط فیزیولوژیکی (نور و دما) بر تولید و خواص علف کشی سیدروفور تولید شده توسط

اكتينوميست كمياب، *آميكولاتوپسيس لوريدا*

مهسا عي قرلو، اكرم صادقي، على محمدي

' 1050

چکیده

پیشینه پژوهش: شربت نیشکر، به دلیل غلظت بالای قند و فعالیت آبی پایین، محیط ایدهآلی برای رشد میکروارگانیسمهای اسموفیلیک میتوانند رشد اسموفیلیک - به ویژه گونههای خاصی از مخمر - ایجاد میکند. در میان این میکروارگانیسمها، مخمرهای اسموفیلیک میتوانند رشد و تکثیر کنند و منجر به آلودگی میکروبی شوند. چنین آلودگی منجر به کدورت، طعم نامطلوب و کاهش ماندگاری میشود و کیفیت محصول نهایی را به شدت به خطر میاندازد. این مشکلات کیفی، شربت را برای کاربردهای صنعتی، به ویژه در تولید مواد غذایی و نوشیدنی، که در آن شفافیت و پایداری میکروبی بسیار مهم است، نامناسب میکند. بنابراین، شناسایی و کنترل آلایندههای میکروبی اصلی برای بهبود پایداری و ایمنی محصول ضروری است.

هدف: در این مطالعه پتانسیل علف کشی سیدروفور Amycolatopsis lurida strain 407 و متابولیتهای آن در دو مورفولوژی کلنی بررسی شد. این مطالعه با هدف روشن کردن رابطه بین تولید سیدروفور و مهار رشد گیاه انجام شد.

روشها: این مطالعه دو نوع کلنی (قرمز و سفید) از گونه A. lurida سویه ۴۰۷ را از نظر فعالیت علف کشی در شرایط مختلف بررسی کرد. هر دو فیلتراسیون کلنی به طور قابل توجهی رشد علفهای هرز و ریشه قرمز را مهار کردند. تولید سیدروفور در گونه قرمز (۶۱۳.۴ (ppm) (۳۸۸.۵ (ppmبیشتر از گونه سفید (۳۸۸.۵ (ppmبود. بخشهای کروماتوگرافی سرکوب شدید رشد علفهای هرز، به ویژه آنهایی که فعالیت کلات کننده آهن داشتند، را نشان دادند. نتایج نشان می دهد که سیدروفورهای A. lurida پتانسیل علف کشی زیستی قوی دارند و می توانند جایگزینهای سازگار با محیط زیست برای علف کشهای شیمیایی باشند.

نتایج: هر دو کلنی مهار قابل توجهی بر علفهای هرز نشان دادند. غلظت سیدروفور در محیط دارای کمبود آهن برای قرمز برای قرمز ساقه چچم را تا ۴۵٪، ppm4/613 و برای سفید ppm5/388 تعیین شد. کروماتوگرافی ستونی نشان داد همه فرکشنهای قرمز ساقه چچم را تا ۴۵٪ ریشه چچم را تا ۳۸–۸۶٪ و تاجخروس را تا ۳۶٪ کاهش دادند. فرکشنهایی از سویه سفید به طور کامل از جوانه زنی جلوگیری کردند یا ریشه چچم را تا ۹۴٪ کاهش و طول تاجخروس را تا ۵۲٪ کاهش دادند. فراکشنهایی که فعالیت کلات آهن داشتند در کاهش رشد گیاه مؤثر تر بودند و ممکن است سیدروفورها و سایر متابولیتها با هم افزایی فعالیت علف کشی داشته باشند.

نتیجه گیری: این یافته ها نشان میدهد سیدروفورهای A. lurida 407 دارای خواص علف کشی هستند و ممکن است به عنوان یک جایگزین پایدار برای محیط زیست برای علف کشهای شیمیایی عمل کنند. این مطالعه بر پتانسیل سیدروفورها، به تنهایی یا در ترکیب با سایر متابولیتها، برای سرکوب رشد علفهای هرز و ترویج شیوههای کشاورزی پایدار تاکید می کند.

كليدواژه: Amycolatopsis lurida، كروماتو گرافي، سيدروفر

14th & 15th May 2025 - Isfahan, Iran

(04500491)- Screening of bacteria isolated from Haliclona sp. Persian Gulf sponge for production of antibacterial bioactive molecules

Parisa Yekta Sanati¹, Shams-ol-Zahi Abol-Maali², Shakiba Darvishalipour Astaneh³

¹ Department of Biotechnology, Faculty of Modern Science and Technology, Semnan University, Semnan, Iran

² Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran ³ Department of Biotechnology, Faculty of Modern Science and Technology, Semnan University, Semnan, Iran

Coresspondence email: Shams-ol-Zahi Abol-Maali (s_abolmaali@semnan.ac.ir)

ABSTRACT

Background: Bacteria symbiotic with marine sponges are a source of secondary metabolites.

Objective: The present study was conducted with the aim of identifying antibacterial producing isolates from the marine sponge Haliclona sp

Methods: 15 isolates were tested against indicator bacteria by agar diffusion test. PGCM35 isolate was further studied due to its reproducibility against most bacteria. The active compound(s) were extracted and concentrated with dichloromethane. The effect of concentrations of 2.5 to 15 µg/µl of the concentrated antimicrobial compound on the destruction of Staphylococcus aureus biofilm was studied and the stability of antimicrobial activity was investigated for 15 minutes in the pH range and temperature range. Identification of the antimicrobial compound was determined using optical absorption and chemical reagents were used. The diameter of the growth inhibition zone of PGCM35 isolate against Bacillus subtilis and Staphylococcus aureus was 20 mm and against Bacillus cereus was 15 mm, which showed the highest antimicrobial effect with a minimum inhibitory concentration of 25 µg/µl. The IC50 of the compound on biofilm destruction was 10 µg/µl. Antimicrobial activity was 100% at temperatures of -70 to 50 degrees Celsius, 97.77% at temperatures of 60 to 121 degrees Celsius. And at pHs of 4 and 11, 98.275% and 96.551% were observed, respectively. Using Dragendorff and Wagner reagents, color change was observed along with the formation of a precipitate at the end of the tube, indicating the presence of alkaloid compounds. By performing molecular tests, the PGCM35 isolate was confirmed to be Bacillus licheniformis. The alkaloid compound produced by the symbiotic bacterium with the sponge Haliclona sp. with antimicrobial effect on Gram-positive bacteria can be a candidate for further studies to discover new antibacterial drugs.

Conclusion: The alkaloid compound produced by the sponge symbiotic bacterium Haliclona sp. with antimicrobial effect on Gram-positive bacteria could be a candidate for further studies to discover new antibacterial drugs.

Keywords: Haliclona sp , Antibacterial , sponge

References:

- 1. Nasiri, N., Taherizadeh, M. R., Gozari, M., & Tamadoni Jahromi, S. (2024). Biodiversity and screening of antimicrobial, antioxidant, and cytotoxic activity of bacteria isolated from the Persian Gulf sponge (Halicona oculata). Iranian Journal of Fisheries Sciences, 23(5), 739-755.
- 2. Ansarizadeh, A., Kafilzadeh, F., Tamadoni Jahromi, S., Kargar, M., & Gozari, M. (2023). Isolation, identification and evaluation of the anti-diabetic activity of secondary metabolites extracted from bacteria associated with the Persian Gulf sponges (Haliclona sp. and Niphates sp.). Iranian Journal of Fisheries Sciences, 22(3), 511-525.
- 3. Nasiri, N., Taherizadeh, M. R., & Gozari, M. (2023). Investigating the Antimicrobial Activity of Bacteria associated with the Marine sponge Haliclona sp. collected from the Persian Gulf. Journal of Marine Medicine, 4(4), 215-222.

Research Center For Natural & Biopharmaceutical Products Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran

Research Center For Natural & Biopharmaceutical Products

' 1051

14th & 15th May 2025 - Isfahan, Iran

۰۴۵۰۰۴۹۱ غربالگری باکتریهای جدا شده از اسفنج Haliclona sp. خلیج فارس برای تولید مولکولهای فعال

زيستى ضدباكترى

پریسا یکتای صنعتی، شمس الضحی ابوالمعالی، شکیبا درویشعلیپور آستانه

' 1052

چکیده

پیشینه پژوهش: باکتریهای همزیست با اسفنج دریایی منبع متابولیتهای ثانویه هستند.

هدف: پژوهش حاضر، با هدف شناسایی جدایههای تولیدکننده ضدباکتری از اسفنج دریایی Haliclona sp انجام گرفت.

روشها: ۱۵ جدایه با آزمون انتشار در آگار علیه باکتری های شاخص بررسی شدند. جدایه PGCM35 بعلت اثرگذاری علیه اکثر باکتری ها با کتری ها با تکرارپذیری مورد مطالعه بیشتر قرار گرفت. ترکیب(ات) فعال با دیکلرومتان استخراج و تغلیظ صورت گرفت. تاثیر غلظتهای 2.5 μ تا ۱۵ از ترکیب ضدمیکروبی تغلیظشده بر تخریب بیوفیلم استافیلکوکوس اورئوس مطالعه و بررسی پایداری فعالیت ضدمیکروبی به مدت ۱۵ دقیقه در دامنه p و بازه دمایی انجام شد. شناسایی ترکیب ضدمیکروبی با استفاده از جذب نوری تعیین و از معرفهای شیمیایی استفاده شد.

نتایج: قطر هاله عدم رشد جدایه PGCM35 علیه باسیلوسسوبتیلیس و استافیلوکوکوساورئوس ۲۰ میلیمتر و علیه باسیلسسرئوس ۱۵ میلیمتر میباشد که با حداقل غلظت مهارکنندگی $\mu g/\mu 1$ بیشترین اثر ضدمیکروبی را نشان داد. IC50 باسیلسسرئوس ۱۵ میلیمتر میباشد که با حداقل غلظت مهارکنندگی ۷۰–تا ۵۰ درجه سلسیوس ۱۰۰٪، در دماهای ترکیب موردنظر بر تخریب بیوفیلم $\mu g/\mu 1$ میباشد. فعالیت ضدمیکروبی در دماهای ۲۰–تا ۵۰ درجه سلسیوس ۱۲۰٪، و در PHهای ۴ و ۱۱ به ترتیب ۹۸.۲۷۵٪ و ۹۶.۵۵۱٪ مشاهده شد. با استفاده از معرفهای دراژندورف و واگنر تغییر رنگ همراه با تشکیل رسوب در انتهای لوله مشاهده شد که نشان از وجود ترکیبات آلکالوئیدی میباشد. با انجام آزمونهای مولکولی، جدایه PGCM35 باسیلوس لیکنی فورمیس تایید شد.

نتیجه گیری: ترکیب آلکالوئیدی تولیدشده توسط باکتری همزیست با اسفنج Haliclona sp با اثر ضدمیکروبی بر باکتریهای گرم مثبت می تواند کاندیدی برای مطالعات بیشتر برای کشف داروهای ضدباکتریایی جدید باشد.

كليدواژه: Haliclona sp ، ضد باكترى، اسفنج

Iranian society of Microbial Science & **Technology**

14th & 15th May 2025 - Isfahan, Iran

(00120704)-Increasing the productivity rate of Pestalan exopolysaccharide production from Neopestalotiopsis sp. strain SKE-15 by Bench-Top fermentor system

Sahar Alipour kafi¹; Mohammad Reza Soudi^{1*}, Afrouzossadat Hosseini Abari²

' 1053

University

of Isfahan

1 Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran 2 Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Coressponding author: Mohammad Reza Soudi (soudimr@gmail.com)

ABSTRACT

Background: Polysaccharides, particularly microbial exopolysaccharides (EPS), have garnered significant attention due to their diverse industrial applications, including roles as thickeners, stabilizers, and bioactive compounds in food, pharmaceuticals, and biomedicine.

Objective: The aim of this study was to produce pestalan polysaccharide in Bench-Top bioreactor system to increase the productivity and reduce production costs of pestalan polysaccharide.

Methods: The *Neopestalotiopsis* sp. SKE-15 was used to produce Pestalan polysaccharide. A synthetic culture medium containing 30 g/L glucose, 1.25 g/L KNO₃, 0.05 g/L MgSO₄.7H₂O₂, 0.05 g/L K₂HPO₄, 0.05 g/L MnSO₄.5H₂O, 0.005 g/L FeSO₄ (pH~7.0) was used to produce Pestalan. Seed culture was prepared in 500-ml shake flasks containing 100 ml LB broth and incubated for 24 h at 28°C and 150 rpm. The seed culture with final concentration of 10 % was inoculate to final synthetic production medium in a 2 L bench top bioreactor (Biostat B Fermenter, B. Braun Company) equipped with Rushton six-blade turbine stirrer. The fermentation process was performed at 28°C with 1 v/v.m aeration and 400 rpm agitation for 34 h.

Results: The pestalan polysaccharide obtained from Neopestalotiopsis sp. strain SKE-15 culture in baffled flasks and lab scale condition was 3.79 g/L after 144 h cultivation. Production of pestalan in Bench-Top bioreactor system reduced the fermentation time from 144 hours to 34 hours with 2.84 g/L polysaccharide production. The results of this study demonstrated that production time of fermentation process in the bioreactor is reduced more than 4 times which leads to a threefold increasing in productivity rate (from 0.02 to .06).

Conclusion: These findings suggest promising potential for reducing both production costs and time, thereby supporting the continued advancement and application of such compounds across various industries.

Keywords: Exopolysaccharide, Pestalan, *Neopestalotiopsis* sp. SKE-15, Fermentor **References:**

- 1. Fooladi, Tayebeh, et al. "Bioactive exopolysaccharide from Neopestalotiopsis sp. strain SKE15: Production, characterization and optimization." International journal of biological macromolecules 129 (2019): 127-139.
- 2. Valdez, A. L., Delgado, O. D., & Fariña, J. I. (2021). Cost-effective optimized scleroglucan production by Sclerotium rolfsii ATCC 201126 at bioreactor scale. A quantity-quality assessment. Carbohydrate Polymers, 260, 117505.
- 3. Prathumpai, Wai, et al. "Exopolysaccharide (EPS) Production by Endophytic and Basidiomycete Fungi." Fermentation 11.4 (2025): 183.

Research Center For Natural & Biopharmaceutical Products Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran

14th & 15th May 2025 - Isfahan, Iran

۰۰۱۲۰۷۰۴ افزایش نرخ بهرهوری تولید اگزوپلیساکارید پستالان در کشت Neopestalotiopsis SKE-15 توسط

تخمیر در فرمانتور

سحر على پور كافى؛ محمدرضا صعودى، افروزالسادات حسينى ابرى

' 1054

چکیده

پیشینه پژوهش: پلیساکاریدها، بهویژه اگزوپلیساکاریدهای میکروبی (EPS)، به دلیل کاربردهای متنوع صنعتی خود، از جمله نقشهایی به عنوان غلیظ کننده، تثبیت کننده و ترکیبات زیستفعال در مواد غذایی، دارویی و زیست پزشکی، توجه زیادی را به خود جلب کردهاند.

هدف: هدف از این مطالعه کاهش هزینههای تولید و افزایش بهرهوری پلیساکارید پستالان با استفاده از کشت در فرمانتور آزمایشگاهی بود.

روشها: برای تولید پلیساکارید پستالان از سویه Neopestalotiopsis SKE-15 استفاده شد. از محیط کشت پایه نمک حاوی روشها: برای تولید پلیساکارید پستالان از سویه Neopestalotiopsis SKE-15 استفاده شد. از مویل NnSO4.5H2O ، ۱/۰۵ g/L K2HPO4 ، ۱/۰۵ g/L MgSO4.7H2O ، ۱/۲۵ g/l KNO3 ،۳۰ g/L و حاوی ۱۰۰ و برای تولید پستالان استفاده شد. بذر سلولی در فلاسک ۵۰۰ میلیلیتری حاوی ۱۰۰ میلیلیتر محیط کشت بذر کشت الله کشت بدر کشت الله کشت بدر دمای ۲۸ درجه سانتی گراد و سرعت ۱۵۰ دور در دقیقه گرمخانه گذاری شد. کشت بذر سلولی با غلظت نهایی ۱۰٪ به محیط کشت نهایی در فرمانتور دو لیتری(B. Braun شرکت الله هوادهی ۱۰۰ دور در دور در دور در دور در دور در دور در دور کشت نهایی ۱۰٪ به محیط کشت نهایی ۲۸ درجه سانتی گراد با هوادهی ۷/۷.m و همزدن توربین شش پر راشتون تلقیح شد. فرآیند تخمیر در دمای ۲۸ درجه سانتی گراد با هوادهی ۳۷/۷.m و همزدن ۳۰۰ دور در دقیقه به مدت ۳۴ ساعت انحام شد.

نتایج: تولید پلیساکارید پستالان با استفاده از سویه Neopestalotiopsis SKE-15 در محیط پایه نمک در فلاسک شیاردار N00 استفاده از سویه N15 با اندازه گیری شده بود. کشت قارچ در فرمانتور آزمایشگاهی مدت زمان تخمیر را از N16 روز به N16 با اندازه گیری شد. ساعت کاهش داد و مقدار پلی ساکارید تولید شده در این زمان N16 با اندازه گیری شد.

نتیجه گیری: نتایج این پژوهش نشان داد اگرچه میزان تولید پستالان در فرمانتور کاهش مییابد اما این کاهش زمان منجر به افزایش بیش از سه برابری نرخ بهرهوری تولید اگزوپلیساکارید میشود. این نتایج نوید بخش کاهش هزینهها و زمان تولید و پیشرفت روز افزون این ترکیبات در صنایع مختلف میشود.

كليدواژه: اگزوپلىساكاريد، پستالان، Neopestalotiopsis SKE-15 ، فرمانتور

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1055

14th & 15th May 2025 - Isfahan, Iran

(01890153)-Genome mining of secondary metabolite biosynthetic genes in plasmids of Actinomycetota

Kiarash Sadeghian Esfahani¹; Najmeh Salehi¹; Javad Hamedi^{1*}

1Department of Translational Biology (Dept. of Microbial Biotechnology), School of Biology, College of Science, University of Tehran, Tehran, Iran

Correspondence email: Javad Hamedi (jhamedi@ut.ac.ir)

ABSTRACT

Background: *Actinomycetota* is one of the most useful bacterial phyla in producing bioactive compounds, which may be related to their higher genome content.

Objective: Conduct comprehensive research on actinobacterial plasmids (AP) to find their impact on synthesis of bioactive compounds.

Methods: Genome sequences of *Actinomycetota* were obtained from NCBI and analyzed using AntiSMASH on plasmid datasets, focusing on genomic organization, secondary metabolite gene (SMG) composition, and evolutionary traits.

Results: AP categorized as specialist [SP] (>70% of their genome was allocated to a single SMG) and generalist groups [GP] (lack such a dominant gene). The SP is found in seven actinobacteria, whereas the GP appears in 54 actinobacteria. SPs range from 0.5-300 kb, smaller than the average AP size (579 kb). A positive correlation (76%) exists between plasmid size and the number of SMGs. For example, 6 actinomycetotas have 12-22 SMG. In contrast, 33 AP contain only one SMG. In some cases, plasmid genome space is dedicated to functions beyond secondary metabolite production. APs are linked to various roles, including antibiotic synthesis, pathogenicity factors, and signaling molecules.

Conclusion: Plasmids are critical to the ecological and evolutionary success of microorganisms, serving as hubs for secondary metabolite production.. Exploring the genomic diversity and functional roles of AP further promises to unlock new opportunities for synthetic biology and natural product innovation.

Keywords: Actinomycetota, Actinobacterial plasmids (AP), Bioactive compounds

References:

- 1. Bruna, P., Núñez-Montero, K., Contreras, M.J., Leal, K., García, M., Abanto, M., and Barrientos, L. (2024). Biosynthetic gene clusters with biotechnological applications in novel Antarctic isolates from Actinomycetota. Applied Microbiology and Biotechnology 108, 325.
- 2. Bhattacharjee, A., Sarma, S., Sen, T., Devi, M.V., Deka, B., and Singh, A.K. (2023). Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Archives of Microbiology 205, 127.
- 3. Liu, T., Ren, Z., Chunyu, W.-X., Li, G.-D., Chen, X., Zhang, Z.-T.-L., Sun, H.-B., Wang, M., Xie, T.-P., and Wang, M. (2022). Exploration of diverse secondary metabolites from Streptomyces sp. YINM00001, using genome mining and one strain many compounds approach. Frontiers in Microbiology 13, 831174.

\$10.5°

APPLIED MICROBIOLOGY

14th & 15th May 2025 - Isfahan, Iran

۰۱۸۹۰۱۵۳ ژنوم کاوی ژنهای بیوسنتزی متابولیتهای ثانویه در پلاسمیدهای *Actinomycetota*

كيارش صادقيان اصفهاني؛ نجمه صالحي؛ جواد حامدي

چکیده

' 1056

پیشینه پژوهش: Actinomycetota یکی از مفیدترین شاخههای باکتریایی در تولید ترکیبات زیستفعال است که ممکن است این ویژگی به محتوای ژنتیکی بالاتر آنها مرتبط باشد.

هدف: انجام پژوهشی جامع بر روی پلاسمیدهای اکتینوباکتریایی (AP) به منظور بررسی تأثیرات آنها در سنتز ترکیبات زیستفعال. روشها: توالیهای ژنومی AntiSMASH از NCBI دریافت شده و با استفاده از AntiSMASH بر روی مجموعه دادههای پلاسمیدی، با تمرکز بر سازماندهی ژنومی، ترکیب ژنهای متابولیتهای ثانویه (SMG) و ویژگیهای تکاملی، مورد تجزیهوتحلیل قرار گرفتند.

نتایج: پلاسمیدهای اکتینوباکتریایی (AP) به دو گروه تخصصی [SP] (بیش از ۷۰٪ از ژنوم آنها به یک ژن متابولیت ثانویه (SMG) اختصاص دارد) و عمومی [GP] (فاقد چنین ژن غالبی) دستهبندی شدند. گروه SP در هفت اکتینوباکتری یافت شد، در حالی که GP در ۴۵ اکتینوباکتری مشاهده گردید. اندازه SP بین ۵۰ تا ۳۰۰ کیلوباز متغیر بوده و از میانگین اندازه پلاسمیدهای اکتینوباکتریایی (۵۷۹ کیلوباز) کوچکتر است. همبستگی مثبت ۷۶٪ بین اندازه پلاسمید و تعداد ژنهای SMG مشاهده شد. به عنوان مثال، ۶ گونه SMG دارند. در برخی SMG هستند، در حالی که ۳۳ گونه فقط یک SMG دارند. در برخی موارد، فضای ژنومی پلاسمیدهای اکتینوباکتریایی و مولکولهای سیگنالینگ مرتبط هستند.

نتیجه گیری: پلاسمیدها برای موفقیت اکولوژیکی و تکاملی میکروارگانیسمها حیاتی هستند و بهعنوان مراکزی برای تولید متابولیتهای ثانویه عمل میکنند.. بررسی تنوع ژنومی و نقشهای عملکردی اکتینوباکتریها (AS) میتواند فرصتهای جدیدی را در زیستشناسی سنتزی و نوآوری در تولید محصولات طبیعی فراهم کند.

کلیدواژه: اکتینومایستوتا، پلاسمیدهای اکتینوباکتریایی (AP)، ترکیبات زیستفعال

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1057

14th & 15th May 2025 - Isfahan, Iran

(02110038)- Evaluation of aflatoxin M1 in industrial and traditional milk by ELISA and evaluation of *Aspergillus flavus* contamination in milk in Yazd province

Mahdi Soltani¹; Samaneh Sedighi-Khavidak^{1*}

1Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran

Correspondence email: Samaneh Sedighi-Khavidak (sedighi.samaneh@yahoo.com)

ABSTRACT

Background: Aflatoxins are produced in some agricultural products by some species of *Aspergillus* fungi such as *Aspergillus flavus* and *Aspergillus parasiticus*. When cows consume food contaminated with aflatoxin B1, aflatoxin M1 is excreted into the milk. These toxins play an important role in diseases such as liver cancer, chronic hepatitis and liver cirrhosis.

Objective: The aim of this study was to determine aflatoxin M1 content in raw and pasteurised milk in Yazd province.

Methods: Fifty milk samples, including 30 pasteurised and 20 raw milk samples, were collected from raw and pasteurised milk in different regions of Yazd province. After centrifugation, the supernatant, which contained milk fat, was discarded. The lower part of the fat-free centrifuged milk was analysed by ELISA and EuroProxima kit and the aflatoxin content was determined. The milk samples were cultured on specific culture media and the fungal contamination was determined. The isolated fungal colonies were identified.

Results: The results showed that all samples were contaminated with aflatoxin M1. In addition, the aflatoxin content in 38 samples (95%) was above the European standard and only 2 out of 24 pasteurised milk samples (8.33%) had a lower level of encoded aflatoxin. The results also showed a high contamination of the milk samples with different species of *Aspergillus* and *Penicillium* fungi such as *Aspergillus flavus*, *Aspergillus niger* and *Penicillium notatum*.

Conclusion: The results indicate that more care should be taken in animal care and milk processing.

Keywords: Aflatoxin M1, Traditional milk, Industrial Milk, Yazd, Aspergillus flavus, ELISA

References:

- 1. Pour, S.H., Mahmoudi, S., Masoumi, S., Rezaie, S., Barac, A., Ranjbaran, M., Oliya, S., Mehravar, F., Sasani, E., and Noorbakhsh, F. (2020). Aflatoxin M1 contamination level in Iranian milk and dairy products: A systematic review and meta-analysis. World mycotoxin journal 13, 67-82.
- 2. Rezaei, Z., Hamzeh Pour, S., Ezati, P., and Akrami-Mohajeri, F. (2024). Determination of aflatoxin M1 and ochratoxin A in breast milk in rural centers of Yazd, Iran: Exposure assessment and risk characterization. Mycotoxin Research 40, 211-221.
- 3. Abyaneh, H.K., Bahonar, A., Noori, N., Yazdanpanah, H., and AliAbadi, M.H.S. (2020). The overall and variations of Aflatoxin M1 contamination of milk in Iran: A systematic review and meta-analysis study. Food chemistry 310, 125848.

Congress Address:

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

۰۲۱۱۰۰۳۸ ارزیابی آفلاتوکسین M1 در شیر صنعتی و سنتی با روش الایزا و بررسی آلودگی آسپرژیلوس فلاووس در

شیر استان یزد

مهدى سلطاني؛ سمانه صديقي خويدك

' 1058

چکیده

پیشینه پژوهش: آفلاتوکسین در برخی محصولات کشاورزی توسط برخی از گونه های قارچ آسپرژیلوس مانند آسپرژیلوس فلاووس و آسپرژیلوس فلاووس و آسپرژیلوس فلاتوکسین M1 در آفلاتوکسین B1 مصرف می کنند، آفلاتوکسین M1 در شیر دفع می شود. این سموم نقش مهمی در بیماری هایی مانند سرطان کبد، هپاتیت مزمن و سیروز کبدی دارند.

هدف: هدف از این مطالعه تعیین میزان آفلاتوکسین M1 در شیر خام و پاستوریزه در استان یزد بود.

روشها: ۵۰ نمونه شیر شامل ۳۰ نمونه شیر پاستوریزه و ۲۰ نمونه شیر خام از مناطق مختلف استان یزد جمع آوری شدند. پس از سانتریفیوژ، مایع رویی که حاوی چربی شیر بود، دور ریخته شد. بخش زیرین شیر سانتریفیوژ شده بدون چربی با استفاده از کیت ELISA و EuroProxima آنالیز و میزان آفلاتوکسین تعیین شد. نمونههای شیر بر روی محیط کشت های اختصاصی کشت داده شده و آلودگی قارچی آن مشخص شد. کلنی های قارچی جدا شده و شناسایی شدند.

نتایج: نتایج نشان دهنده آلودگی همه نمونه ها به آفلاتوکسین M1 بود. علاوه بر این، میزان آفلاتوکسین در ۳۸ نمونه (۹۵ درصد) بالاتر از استاندارد اروپا بود و تنها ۲ نمونه از ۲۴ نمونه شیر پاستوریزه (۸/۳۳ درصد) سطح پایین تری از آفلاتوکسین داشتند. همچنین، نتایج نشان دهنده آلودگی بالای نمونه های شیر به گونه های مختلف قارچ های آسپرژیلوس و پنی سیلیوم مانند آسپرژیلوس فلاووس، آسپرژیلوس نیجر و پنی سیلیوم نوتاتوم بود.

نتیجه گیری: نتایج نشان می دهد که باید در مراقبت از دام و فرآوری شیری بیشتر دقت شود. کلیدواژه: آفلاتوکسین M1، شیر سنتی، شیر صنعتی، یزد، آسیرژیلوس فلاووس، الیزا

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1059

14th & 15th May 2025 - Isfahan, Iran

(07000423)- Bacteriophages and food biosafety in application

Raheleh Majdani 1*

¹Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran

Correspondent email: Raheleh Majdani (rahelehmajdani@yahoo.com)

ABSTRACT

Background: Foodborne diseases and contaminated food with pathogenic bacteria is one of the important concerns of healthcare organizations in the field of safety. Conventional antibacterial techniques and agents, in fact reduce bacterial growth in food to varying degrees. But in spite of their antibacterial features, oncogenicity and allergy to the materials were reported in previous studies. Also, significantly, these cleaning techniques remove all contaminants, including various (often helpful) microorganisms found naturally in food. Bacteriophages, bacterial viruses, were shown as re-emerged and highly potentiated non-chemical antibacterials recently. They can be appropriate candidates alternating to chemical agents and antibiotics in bio-control of food and water bacterial contaminations.

Objective: The current study focused of bacteriophage applications in different type of foods and it has summarized outcomes of using bacteriophages in removing or reducing different bacterial contaminations in foods. Also, some challenges for real application of phage-based antimicrobials in future was investigated.

Context: Based on the results, using bacteriophages in food industry can be an effective biological approach for controlling the food and water bacterial contaminations.

Conclusion: In conclusion, the results clearly demonstrate that bacteriophages offer a promising and effective biological strategy for managing bacterial contamination in both food and water industries. Their specificity, safety, and ability to target harmful bacteria without affecting beneficial microflora make them a valuable tool for enhancing food safety and public health. Integrating bacteriophage applications into current sanitation and preservation practices could significantly reduce the risk of foodborne illnesses and improve overall quality control in the food supply chain.

Keywords: Bacteriophage, Biosafety, Food borne pathogen, Bacteria **References:**

- 1. Amjada, N., Naseera, M., Imranb, A., Menonc, S. et al. (2024). A mini-review on the role of bacteriophages in food safety, CyTA *Journal of Food*, 22(1), 2357192.
- 2. Bensid,A.; El Abed,N.; Houicher,A.; M. Regenstein,J.; Özogul,F. (2020) Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food a review. *Critical Reviews in Food Science and Nutrition*, 62(11):2985-3001.

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

۰۷۰۰۰۴۲۳ باکتریوفاژها و امنیت زیستی مواد غذایی در عمل

راحله مجداني

' 1060

چکیده

پیشینه پژوهش: امروزه بیماریهای ناشی از مواد غذایی و غذاهای آلوده با باکتریهای بیماریزا یکی از نگرانیهای مهم سازمانهای مرتبط با حوزه سلامت می باشد. در این میان روش ها و مواد ضدمیکروبی معمول مورداستفاده در موادغذایی قادرند رشد باکتریها را در مقادیر متفاوت کاهش دهند ولی با وجود خواص و عملکرد ضدباکتریایی این روشها، سرطانزایی و آیجاد آلرژی توسط آنها در مطالعات قبلی گزارش شده است و مهمتر اینکه این روشها تمام میکروارگانیسمها ازجمله میکروارگانیسمهای طبیعی موجود در غذاها را هم از بین می برند. باکتریوفاژها، ویروسهای باکتریایی، اخیرا به عنوان مواد ضدباکتریایی بازپدید غیرشیمیایی و دارای پتانسیل بالای ضدمیکروبی مورد توجه قرار گرفته اند. آنها می توانند به عنوان کاندیدای مناسبی جهت جایگزینی با ترکیبات شیمیایی و آب و غذا باشند.

هدف: این مطالعه با تمرکز بر روی کاربرد عملی باکتریوفاژها در کاهش بار آلودگی انواع مختلف مواد غذایی بخصوص موادغذایی آماده مصرف و خام، نتایج حاصل از این تحقیقات را جمع بندی نموده و همچنین چالشهای پیش روی استفاده واقعی از ترکیبات ضدمیکروبی برپایه فاژ در آینده را بررسی نموده است.

روشها: باکتریوفاژ، ایمنی زیستی، پاتوژن منتقله از غذا، باکتری

نتایج: بر اساس نتایج حاصل استفاده از باکتریوفاژها در صنایع غذایی می تواند یک رهیافت بیولوژیک موثر در کنترل آلودگیهای باکتریایی آب و غذا باشد.

كليدواژه: باكتريوفاژ، سلامت زيستي، عوامل بيماريزاي غذايي، باكتريها

14th & 15th May 2025 - Isfahan, Iran

' 1061

(09130723)-Therapeutic Potential of Lytic Bacteriophage fThrA Against XDR *Acinetobacter* baumannii in a Rat Burn Model

Zahra Nasiri Shoeibi¹; Farzaneh Kianian²; Behnaz Jahanbin³; Mahboobeh Sattarzadeh Tabrizi⁴; Paria Arazi¹; Mohammad Mehdi Feizabadi¹

¹ Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

² Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

³ Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran

⁴ Motahhari Burn Hospital, Tehran University of Medical Sciences, Tehran, Iran Coresspondence email: feizabadimm@gmail.com

ABSTRACT

Background: *Acinetobacter baumannii* is an opportunistic nosocomial pathogen from the Moraxellaceae family. The rising antimicrobial resistance among this pathogen necessitates alternative therapies, such as phage therapy using lytic bacteriophages.

Objective: This study aimed to isolate, identify, and analyze a new lytic bacteriophage targeting extensively drug-resistant (XDR) *A. baumannii* through morphological, physiological, and in vivo evaluations.

Context: Phage fThrA was isolated from hospital wastewater and characterized morphologically, genetically, and functionally. Its stability at varying temperatures and pH levels, anti-biofilm activity, and safety were assessed via whole-genome sequencing. A single dose of the phage was administered to rats with burn wounds infected with XDR *A. baumannii*, and bacterial load and wound healing were monitored over 21 days. Phage fThrA, belonging to the Myoviridae family, formed large, clear plaques with halos, indicating strong lytic activity. It was stable at temperatures up to 80°C and pH 2, and it could inhibit and disrupt biofilms. Genomic analysis confirmed the absence of virulence and lysogeny genes. In vivo, phage treatment led to significant bacterial clearance, reduced inflammation, and accelerated wound healing compared to untreated controls. Phage fThrA exhibited potent antibacterial activity against XDR *A. baumannii* in a preclinical burn model. Its stability, safety, and efficacy with a single dose make it a promising candidate for phage therapy. Further studies should focus on cytokine profiling to explore immune responses to phage treatment.

Keywords: Bacteriophage, Nosocomial, *Acinetobacter baumannii*, Burn **References:**

- 1. McVay CS, Velásquez M, Fralick JA. Phage therapy of *Pseudomonas aeruginosa* infection in a mouse burn wound model. Antimicrob Agents Chemother. 2007;51(6):1934-8.
- 2. Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, et al. Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues Mice from *Acinetobacter baumannii* Wound Infections. Antimicrob Agents Chemother. 2016;60(10):5806-16.
- 3. Zhou W, Feng Y, Zong Z. Two New Lytic Bacteriophages of the Myoviridae Family Against Carbapenem-Resistant *Acinetobacter baumannii*. Front Microbiol. 2018;9:850.

S () ()

APPLIED MICROBIOLOGY

14th & 15th May 2025 - Isfahan, Iran

-۹۱۳۰۷۲۳ علیه Acinetobacter baumannii مقاوم به درمانی باکتریوفاژ لیتیک FThrA علیه درمان درمانی بتانسیل درمانی درمانی درمانی درمانی درمانی موش صحرایی

زهرا نصیری شعیبی ؛ فرزانه کیانیان ؛ بهناز جهان بیان؛ محبوبه ستارزاده تبریزی؛ پریا آرازی؛ محمد مهدی فیض آبادی

چکیده

' 1062

پیشینه پژوهش: اسینتوباکتر بومانی یک پاتوژن فرصتطلب بیمارستانی از خانواده موراکسلا است. افزایش مقاومت آنتیمیکروبیال در این پاتوژن نیاز به درمانهای جایگزین مانند درمان با باکتریوفاژهای لایتیک را برجسته میکند.

هدف: هدف این مطالعه جداسازی، شناسایی و تجزیه و تحلیل یک باکتریوفاژ لایتیک جدید علیه *اسینتوباکتر بومانی* مقاوم به چند دارو (XDR) از طریق ارزیابیهای مورفولوژیکی، فیزیولوژیکی و درون تنی بود.

روشها: باکتریوفاژ fThrA از فاضلاب بیمارستانی جداسازی و ویژگیهای آن از جمله پایداری در برابر دما و pH مختلف، فعالیت ضد بیوفیلم و ایمنی از طریق توالییابی ژنوم بررسی شد. یک دوز از فاژ به موشهای دارای زخم سوختگی آلوده به آلوده به مقاوم تزریق شد و بار باکتریایی و روند بهبود زخمها طی ۲۱ روز پایش گردید.

نتایج: فاژ fThrA متعلق به خانواده Myoviridae بود و پلاکهای بزرگ و شفافی با هاله ایجاد کرد که نشان دهنده فعالیت لیزکنندگی قوی آن است. این فاژ تا دمای ۸۰ درجه سانتی گراد و pH ۲ پایدار بود و قادر به مهار و تخریب بیوفیلمها بود. آنالیز ژنومی عدم وجود ژنهای بیماری زایی و لیزوژنی را تأیید کرد. در مدل حیوانی، درمان با فاژ منجر به کاهش باکتری، کاهش التهاب و تسریع بهبود زخمها شد..

نتیجه گیری: فاژ fThrA اثرات ضدباکتریایی قویای علیه A. baumannii مقاوم به چند دارو در مدل پیشبالینی سوختگی نشان داد و به عنوان گزینهای امیدبخش برای درمان با فاژ مطرح است. مطالعات آینده باید بر آنالیز سایتوکاینها برای بررسی پاسخهای ایمنی به درمان با فاژ تمرکز کنند.

كليدواژه: باكتريوفاژ، بيمارستاني، اسينتوباكتر بوماني، سوختگي

14th & 15th May 2025 - Isfahan, Iran

' 1063

(00990584)-The Effect of Exogenous Gibberellic Acid on the Activity of Some Antioxidant Enzymes in Edible Oyster Mushroom (*Pleurotus florida* P. Kumm.)

Mahtab Rashidi¹; Ramazan Ali Khavari-Nejad^{1*}; Sara Sadatmand¹; Alireza Iranbakhsh¹

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Coresspondence email: Ramazan Ali Khavari-Nejad (<u>ra.khavarinejad@gmail.com</u>)

ABSTRACT

Background: Edible mushrooms are one of the sources of nutrition. Among them, oyster mushroom is an edible mushroom with high antioxidant potential. Gibberellic acid is one of the plant growth hormones that is strongly involved in a wide range of physiological activities. Currently, gibberellic acid is used commercially to enhance the phenotypic characteristics, prematurity, and productivity of many herbal and ornamental products.

Objective: In the present study, the effect of gibberellic acid as a plant hormone on the antioxidant activity of the mycelium of Pleurotus florida P.Kumm. on Potato Dextrose Agar (PDA) was studied.

Methods: Gibberellic acid treatments with different concentrations (0, 3, 9 and 12 mg/L) were used. The samples were transferred to a dark incubator at 22 °C and the treatment period was 30 days. In this study, the activity of catalase, peroxidase and superoxide dismutase enzymes was evaluated.

Results: The results showed that the activity of catalase, peroxidase and superoxide dismutase mycelium enzymes in media containing concentrations of gibberellic acid (3 and 9 mg/L) had a significant increase compared to the control treatment.

Conclusion: It seems that research on the effect of gibberellic acid on the activity of antioxidant enzymes as primary metabolites in pleurotus oysters can be valuable from a pharmacological and economic point of view.

Keywords: Gibberellic acid, *Pleurotus florida*, Antioxidant, Catalase, Peroxidase and Superoxide Dismutase

References:

- 1. González-Palma, I., Escalona-Buendía, H.B., Ponce-Alquicira, E., Téllez-Téllez, M., Gupta, V.K., Díaz-Godínez, G. and Soriano-Santos, J. (2016) Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages. Front. Microbiology 7:1099.
- 2. Didi, D.A.; Su, S.; Sam, F.E., Tiika, R.J.; Zhang, X.(2022) Effect of Plant Growth Regulators on Osmotic Regulatory Substances and Antioxidant Enzyme Activity of Nitraria tangutorum. Plants 2022, 11,2559.
- 3. Kaushal, V., Thakur, V., Kumar, M., and Bhatt, A.K. (2018) Anti-Oxidative Stress Enzyme from Pleurotus sp. Advances in Biotechnology & Microbiology (2018) 10(5).

14th & 15th May 2025 - Isfahan, Iran

۰۰۹۹۰۵۸۴ اثر جیبرلیک اسید اگزوژن بر فعالیت برخی آنزیمهای آنتی اکسیدان در قارچ صدفی خوراکی

(Pleurotus florida P. Kumm.)

مهتاب رشیدی؛ رمضانعلی خاوری نژاد؛ سارا سعادتمند؛ علیرضا ایرانبخش

' 1064

چكىدە

پیشینه پژوهش: قارچهای خوراکی یکی از منابع تغذیه ای به شمار می روند. از میان آنها قارچ صدفی یک قارچ خوراکی با پتانسیل بالای آنتیاکسیدانی می باشد. جیبرلیک اسید یکی از هورمون های رشد گیاهی است که در طیف گسترده ای از فعالیت های فیزیولوژیکی گیاهان نقش دارد. در حال حاضر، جیبرلیکاسید به صورت تجاری برای افزایش ویژگی های فنوتیپی، زودرس بودن و بهرهوری بسیاری از محصولات گیاهی و زینتی استفاده می شود.

هدف: در مطالعه حاضر تاثیر جیبرلیک اسید به عنوان یک هورمون گیاهی بر فعالیت آنتی اکسیدانی میسلیوم قارچ صدفی . Potato Dextrose Agar (PDA) در محیط کشت Pleurotus florida P.Kumm. مورد بررسی قرار گرفت.

روشها: تیمارهای جیبرلیک اسید با غلظت های مختلف(۰، ۳، ۹ و ۱۲ میلی گرم بر لیتر) مورد استفاده قرار گرفت. نمونهها به انکوباتور تاریک با دمای ۲۲ درجه سانتیگراد منتقل شدند و طول دوره تیماردهی ۳۰ روز بود. در این مطالعه فعالیت آنزیمهای كاتالاز، يراكسيداز و سويراكسيد ديسموتاز مورد ارزيابي قرار گرفت.

نتایج: نتایج حاصله نشان دادند که فعالیت آنزیمهای کاتالاز، پراکسیداز و سوپراکسید دیسموتاز میسلیوم قارچ در محیط های حاوی غلظت های (۳ و ۹ میلی گرم بر لیتر) جیبرلیک اسید در مقایسه با تیمار شاهد، افزایش معنی داری داشتند.

نتیجه گیری: به نظر می رسد تحقیق در زمینه تاثیر جیبرلیک اسید روی فعالیت آنزیمهای آنتی اکسیدان به عنوان متابولیت های اولیه در قارچ صدفی پلوروتوس، از نظر دارویی و اقتصادی میتواند ارزشمند باشد.

کلیدواژه: جیبرلیک اسید، Pleurotus florida، آنتی اکسیدان، کاتالاز، پراکسیداز و سوپراکسیددیسموتاز

Biopharmaceutical Products

Iranian society of Microbial Science & Technology

' 1065

14th & 15th May 2025 - Isfahan, Iran

Genetic characterization of an extensively drug-resistant uropathogenic *Escherichia coli* isolate in Iraq using whole genome sequencing

Ihab Rasmi Hassan¹; Seyedeh Elham Rezatofighi*¹; Hossein Motamedi¹; Md. Tanvir Rahman²

Department of Biology; Faculty of Science; Shahid Chamran University of Ahvaz; Ahvaz; Iran
 Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh

Author for correspondence: Seyedeh Elham Rezatofighi; (e.tofighi@scu.ac.ir; e.tofighi@yahoo.com)

ABSTRACT

Background: The emergence of extremely drug resistant (XDR) *Escherichia coli* strains constituted an important challenge to the management of infections.

Objective: This study aims to investigate the genetic characters of an XDR uropathogenic *E. coli* (UPEC) isolate from Iraq.

Methods: In the present study, an XDR isolate from Dhi Qar/Iraq was investigated. The susceptibility disc diffusion method showed this isolate is XDR. WGS was performed using the NovaSeq 6000 sequencer (Illumina). The libraries with 2×150 bp paired-end were constructed. The reads were assembled de novo using SPAdes and circular genome created by Proksee. Antibiotic resistance genes (ARGs) were predicted by ResFinder and CARD.

Results: Genome analysis showed that 70 AMR genes including bla_{NDM} , $bla_{CTX-M-15}$, and bla_{OXA-1} are exist in this isolate. This isolate belongs to ST410.

Conclusion: This study shows using of WGS can help us to discover the mechanism of antibiotic resistance of bacteria. This could potentially enable the selection of appropriate antimicrobial medicines and enhance patient management, thereby preventing the development and spread of drug-resistant bacteria.

References:

- 1. Terlizzi M.E, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 2017, 8, 1566.
- 2. Elsayed Gawad W, Mohamed Helmy O, Mostafa Tawakkol W, Mohamed Hashem A. Antimicrobial resistance, biofilm formation, and phylogenetic grouping of uropathogenic Escherichia coli isolates in Egypt: The role of efflux pump-mediated resistance. Jundishapur J. Microbiol. 2018, 11, e14444.
- 3. Shaikh N, Hoberman A, Mattoo TK. Urinary tract infections in infants and children older than one month: Clinical features and diagnosis. UpToDate: Waltham, MA, USA. 2021.

14th & 15th May 2025 - Isfahan, Iran

بررسی خصوصیات ژنتیکی یک جدایه *اشرشیا کلی* مولد عفونت ادراری دارای مقاومت گسترده دارو در عراق با روش تعیین توالی کل ژنوم

' 1066

ايهاب رسمي حسن، سيده الهام رضاتوفيقي، حسين معتمدي، تنوير رحمان

چکیده

مقدمه: پیدایش باکتری های مقاوم به طیف گسترده دارو (XDR) در سویه های متعدد اشرشیا کلی منجر به مشکلات جدی در درمان شده است .

اهداف: هدف از این مطالعه آنالیز ژنومی یکی از سویه های اشرشیا کلی مولد عفونت ادراری با مقاومت دارویی گسترده، جدا شده از یک بیمار در عراق می باشد.

روش کار: در این مطالعه یک جدایه اشرشیا کلی مولد عفونت ادراری که از یک بیمار در استان ذیقار/ عراق جدا شده بود مورد بررسی قرار گرفت. تست حساسیت آنتی بیوتیکی نشان داد که این جدایه دارای مقاومت گسترده می باشد. پس از استخراج NovaSeq 6000 sequencer (Illumina) با استفاده از (WGS) با استفاده از (wGS) با استفاده از نرم افزار SPAdes مونتاژ شدند و ژنوم حلقوی \times 150 مونتاژ شدند و ژنوم حلقوی ResFider مونتاژ شدند و ژنوم حلقوی بوسیله سرور Proksee رسم شد. تعیین ژن ها بوسیله \times 150 با استفاده از نرم افزار ResFider مونتاژ شدند و \times 150 مونتاژ شده و \times 150 مونتاژ شد 150 مونتاژ شده و \times 150 مونتاژ شده و \times 150 مونتاژ شده و \times

نتایج: آنالیز ژنومی نشان داد که ۷۰ ژن مقاومت ضدمیکروبی از جمله $bla_{ ext{OXA-1}}$ ه $bla_{ ext{OXA-1}}$ در این جدایه وجود دارد. این جدایه متعلق به ST410 بود .

نتیجه گیری: این مطالعه نشان می دهد استفاده از WGS می تواند در جهت افزایش شناخت ما از مکانیسم مقاومت ضد میکروبی باکتری ها موثر باشد. این امر می تواند به شناسایی ترکیبات ضد میکروبی مناسب کمک کند و مدیریت بیماران را بهبود بخشد و بدین وسیله منجربه جلوگیری از توسعه و گسترش مقاومت ضد میکروبی در باکتری ها شود.

Iranian society of Microbial Science & **Technology**

University of Isfahan

14th & 15th May 2025 - Isfahan, Iran

A review on infection with Nocardia asteroids in fishes, with an emphasis on Iranian fish

Mobina Nouripour ¹, Golnaz Sayyadzadeh ¹, Somaieh Sabzali ^{1*}

1 Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran *Coresspondence email: Somaieh Sabzali (sabzali.s@lu.ac.ir)

' 1067

ABSTRACT

Background: Various research have been performed on Nocardia infection in different fish species across the world. The first case of fish infection with Nocardia asteroides was described in 1963 in neon tetra (Paracheirodon innesi). In Iran, only one case of ornamental fish infection with Nocardia asteroides has been reported.

Objective: Given that *Nocardia asteroides* is a zoonotic pathogen and considering the widespread use of aquariums and the potential transmission of the disease from infected fish to human and other important fish species, here, we review the clinical symptoms, susceptible fish species, diagnostic methods, control measures, and treatment of this disease in fish.

Context: Nocardia asteroides is one of the species commonly associated with nocardiosis and has been reported in humans, dogs, cats, cattle, goats, marine mammals, and fish. This disease has been observed in marine fish such as pompano, croaker, big-eye trevally, snapper, and grouper, as well as in freshwater fish like tilapia. Clinical signs of nocardiosis in fish include emaciation, exophthalmia, distended abdomen, nodules in the gills, spleen, kidneys, and liver, as well as skin ulcers and nodules.

Conclusion: Nocardiosis is a chronic and threatening disease in the aquaculture industry that can lead to economic losses. Given the higher prevalence of this disease in Asian countries and the lack of sufficient studies on fish in Iran, further attention is needed to better understand this disease and raise public awareness in different regions of Iran.

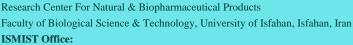
14th & 15th May 2025 - Isfahan, Iran

مروری بر عفونت نوکاردیا (Nocardia asteroides) در ماهیان، با تاکید بر ماهیان ایران

مبینا نوری پور، گلناز صیادزاده ، سمیه سبزعلی

چکیده

' 1068


پیشینه پژوهش: تحقیقات متنوعی بر عفونت نوکاردیا در ماهیان مختلفی از نقاط مختلف جهان صورت گرفته است. اولین مورد از عفونت ماهیان به باکتری Nocardia asteroids در سال ۱۹۶۳ در ماهی تترای نئون (Paracheirodon innesi) گزارش شده است. در ایران نیز تنها یک مورد مبنی بر عفونت ماهیان زینتی به این باکتری گزارش شده است.

هدف: با توجه به اینکه باکتری Nocardia asteroids یک پاتوژن مشترک بین انسان و حیوان بوده و همچنین استفاده گسترده از آکواریومها و احتمال انتقال بیماری از ماهی آلوده به انسان و نیز سایر گونههای حائز اهمیت ماهیان، این مطالعه مروری به بررسی علائم بالینی، ماهیان مستعد، روش های تشخیص، راههای کنترل و درمان آن در ماهیان میپردازد.

متن: باکتری Nocardia asteroids یکی از گونههایی است که اغلب با بیماری نوکاردیا همراه است و در انسان، سگ، گربه، گاو، بز، پستانداران دریایی و ماهی گزارش شده است. این بیماری در ماهیان دریایی و آب شیرین مانند تیلاپیا مشاهده شده است. از جمله علائم بالینی نوکاردیا در ماهیان می توان به لاغری، بیرون زدگی چشم ها، متورم شدن شکم، ندولهایی در آبششها، طحال، کلیه و کبد، همچنین زخمها و ندولهای پوستی نام برد.

نتیجه گیری: نوکاردیوزیس یک بیماری مزمن و تهدیدکننده در صنعت آبزی پروری است که میتواند منجر به خسارات اقتصادی شود. با توجه به شیوع بیشتر این بیماری در کشورهای آسیایی و کمبود مطالعات موردنظر بر روی ماهیان ایران، توجه بیشتری برای شناخت این بیماری و افزایش آگاهی عمومی در مناطق مختلف ایران مورد نیاز است.

\$ 10 kg

APPLIED MICROBIOLOGY

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1069

14th & 15th May 2025 - Isfahan, Iran

(04560292)-Application of Artificial Intelligence (AI) in Microbiology and Medicine

Arman Moradi¹, Mohammad Faezi Ghasemi¹*

1 Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Coresspondence email: Mohammad Faezi Ghasemi (mfaezi@iau.ac.ir)

ABSTRACT

Background: This study examines recent advancements in artificial intelligence and molecular microbiology, along with the integration of these two disciplines. The objective of this integration is to transform the methodologies of research, the diagnosis of diseases, and the formulation of treatments. One of the primary applications of artificial intelligence lies in the identification and classification of microorganisms. Machine learning algorithms possess the capability to discern patterns within DNA data, thereby facilitating the rapid identification of microorganisms. Furthermore, through the analysis of genetic and metabolic data pertaining to microorganisms, artificial intelligence determines their resistance to antibiotics, thereby assisting medical professionals in selecting suitable treatments and mitigating antibiotic resistance. Additionally, artificial intelligence contributes to advancements in gene editing research. By employing AI, researchers can enhance their predictions regarding genetic alterations linked to techniques such as CRISPR-Cas9, resulting in more modifications that are accurate and diminished risks. Moreover, AI aids in the development of new vaccines and treatments by pinpointing essential molecules needed for vaccine formulation, thereby accelerating the process during health crises. Through the examination of intricate microbiome data, AI enhances the understanding of their significance in human health and the environment. Learning AI forecasts the response of microbial communities to environmental shifts and enhances ecosystem management. The application of AI in molecular microbiology encounters challenges, including the necessity for high-quality data and concerns relating to privacy and confidence in the outcomes. Nevertheless, scientific and technological progress has the potential to bolster the role of AI in advancing medical research treatments.

Methods: Researchers can improve their predictions about the genetic changes associated with methods like CRISPR-Cas9, which allow for more precise edits and reduced risks. They can also identify key molecules for vaccine design and help develop new treatments.

Conclusion: By analyzing complex microbiome data, artificial intelligence helps to better understand their role in human health and the environment.

Keywords: Artificial Intelligence, CRISPR-Cas9, Gene Editing, Drug Discovery, Faster Disease Diagnosis **References:**

- 1.Tsitou, V. M., Rallis, D., Tsekova, M., & Yanev, N. (2024). Microbiology in the era of artificial intelligence: transforming medical and pharmaceutical microbiology. Biotechnological Equipment, 38(1), 2349587.
- 2. Alsulimani, A., Akhter, N., Jameela, F., Ashgar, R. I., Jawed, A., Hassani, M. A., & Dar, S. A. (2024). The impact of artificial intelligence on microbial diagnosis. Microorganisms, 12(6), 1051.
- 3. Zhang, X., Zhang, D., Zhang, X., & Zhang, X. (2024). Artificial intelligence applications in the diagnosis and treatment of bacterial infections. Frontiers in Microbiology, 15, 1449844.

14th & 15th May 2025 - Isfahan, Iran

۰۴۵۶۰۲۹۲ -کاربرد های هوش مصنوعی در میکروبیولوژی و پزشکی

أرمان مرادي، محمد فائزي قاسمي

چکیده

' 1070

پیشینه پژوهش: این مطالعه به بررسی پیشرفتهای اخیر در هوش مصنوعی و میکروبیولوژی مولکولی و ترکیب این دو حوزه میپردازد. . یکی از کاربردهای اصلی هوش مصنوعی در شناسایی و طبقه بندی میکروارگانیسم ها است. الگوریتمهای یادگیری ماشینی قادرند الگوهای موجود در دادههای DNA را شناسایی کنند و به شناسایی سریع میکروارگانیسمها کمک کنند. همچنین، هوش مصنوعی با تحلیل دادههای ژنتیکی و متابولیکی میکروارگانیسمها، مقاومت آنها نسبت به آنتیبیوتیکها را شناسایی کرده و به پزشکان در انتخاب درمانهای مناسب و جلوگیری از مقاومت آنتیبیوتیکی یاری میرساند. علاوه بر این، هوش مصنوعی در تحقیقات ویرایش ژن نقش دارد. با استفاده از هوش مصنوعی، محققان می توانند پیش بینی های خود را در مورد تغییرات ژنتیکی مرتبط با روش هایی مانند CRISPR-Cas9 بهبود بخشند و امکان ویرایش های دقیق تر و کاهش خطرات را فراهم کنند.علاوه بر این، هوش مصنوعی با شناسایی مولکولهای کلیدی مورد نیاز برای طراحی واکسن، به توسعه واکسنها و درمانهای جدید کمک می کند و این فرآیند را در شرایط اضطراری بهداشتی سرعت میبخشد. هوش مصنوعی با تجزیه و تحلیل دادههای پیچیده میکروبیومها، به درک بهتر نقش آنها در سلامت انسان و محیط زیست کمک می کند. یادگیری هوش مصنوعی به پیشبینی واکنش میکروبیومها، به درک بهتر نقش آنها در سلامت انسان و محیط زیست کمک می کند. یادگیری هوش مصنوعی به پیشبینی واکنش با چالشهایی مانند نیاز به دادههای با کیفیت و نگرانیهای مربوط به حریم خصوصی و اعتماد به نتایج مواجه است. با این حال، پیشرفتهای علمی و فناوری می تواند نقش هوش مصنوعی را در بهبود تحقیقات و درمانهای پزشکی افزایش دهد.

هدف: هدف این ترکیب تغییر در روشهای تحقیق، تشخیص بیماریها و ایجاد درمانها است.

روشها: محققان می توانند پیش بینی های خود را در مورد تغییرات ژنتیکی مرتبط با روش هایی مانند CRISPR-Cas9 بهبود بخشند و امکان ویرایش های دقیق تر و کاهش خطرات را فراهم کنند.همچنین مولکولهای کلیدی برای طراحی واکسن، شناسایی کرده و به درمانهای جدید کمک کنند.

نتیجه گیری: هوش مصنوعی با تجزیه و تحلیل دادههای پیچیده میکروبیومها، به درک بهتر نقش آنها در سلامت انسان و محیط زیست کمک میکند

کلیدواژه: هوش مصنوعی ، CRISPR-Cas9،ویرایش ژن،کشف دارو،تشخیص سریع تر بیماری ها

14th & 15th May 2025 - Isfahan, Iran

(03580260)- Optimization of Recombinant Production of the Peptide Toxin MeICT in Escherichia

coli

Hoda Ayat¹

' 1071

1 Shahrekord University, Science Faculty, Genetics Group

Coresspondence email: Hoda Ayat (ayat-h@sku.ac.ir)

ABSTRACT

Background: The venom of animals contains various peptides with diverse biological applications. Isolating of these peptides from venom is difficult and costly. Therefore, recombinant production of peptides is a suitable alternative method for their production. The peptide MeICT is a toxin isolated from the venom of the Iranian scorpion Mesobuthus eupeus, which has shown strong anticancer effects.

Objective: This study examines the recombinant production of this peptide in *Escherichia coli*.

Methods: The recombinant production of this peptide faced various challenges, including the effects of toxicity on the bacteria and high production of inclusion bodies due to having three disulfide bonds and a small size.

Results: In this study, high-level production and purification of the recombinant peptide were successfully achieved in *Escherichia coli*.

Conclusion: The successful high-level production and purification of the recombinant peptide in *Escherichia coli* can be utilized for the production of other peptides with similar complex structures.

Keywords: E. coli, MeICT, peptide, purification, recombinant

References:

- 1.Bogomolovas J, Simon B, Sattler M, Stier G (2009) Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 64:16–23
- 2. Cheng SH, Tu Y, Zhang S (2013) FOXM1 promotes glioma cells progression by up-regulating Anxa1 expression. PLoS ONE 8:1–10
- 3.Cheng Y, Zhao J, Qiao W, Chen K (2014) Recent advances in diagnosis and treatment of gliomas using chlorotoxinbased bioconjugates. Am J Nucl Med Mol 4:385–405

1thInternational Congress of APPLIED MICROBIOLOGY

Iranian society of University Microbial Science & of Isfahan Technology

14th & 15th May 2025 - Isfahan, Iran

۰۳۵۸۰۲۶۰ بهینه سازی تولید نوترکیب توکسین پپتیدی MeICT در باکتری *اشرشیا کلی*

هدا هدایت

' 1072

چکیده

پیشینه پژوهش: زهر جانوران حاوی پیتیدهای مختلف با کاربردهای زیستی متنوعی است. جداسازی این پیتیدها از زهر دشوار و هرینه بر است. از این رو تولید نوتر کیب پیتیدها، روش جایگزین مناسب برای تولید آنها می باشد. پیتید MeICT یک توکسین جدا شده از زهر عقرب مزوبوتس اوپئوس ایرانی است که اثرات ضد سرطانی قوی نشان داده است.

هدف: در این مطالعه تولید نوتر کیب این پپتید در باکتری اشرشیا کلی مورد بررسی قرار گرفته است.

روشها: تولید این پپتید به صورت نوترکیب با وجود سه پیوند دی سولفیدی و سایز کوچک، با چالشهای مختلفی از جمله اثرات سمیت بر باکتری و تولید بالای اینکلوژن بادی مواجه بود. در این مطالعه با تغییر شرایط بیان، تغییر سویههای میزبان و بررسی وکتورها مختلف بیانی سعی در بهینه سازی تولید این پیتید شد. همچنین با بررسی بافرهای لیز مختلف تلاش در افزایش راندمان محصول در فاز محلول شد.

نتایج: در این مطالعه، تولید و تخلیص پپتید نوترکیب به میزان بالا در باکتری اشرشیا کلم، ایجاد شد.

نتیجه گیری: تولید و تخلیص پیتید نوتر کیب به میزان بالا در باکتری اشرشیا کلی می تواند برای تولید پیتیدهایی با ساختار پیچیده مشابه مورد استفاده قرار بگید.

كليدواژه: اشرشيا كلي، MeICT، پيتيد، خالص سازي، نوتركيبي

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1073

14th & 15th May 2025 - Isfahan, Iran

(04300251)-Biological control of *Ruthia mucilaginosa* as an oral pathogen by *Saccharomyces*cerevisiae

Arezou jafari ¹, Kivan Beheshti Maal*¹, Seyed Hossein Mirdamadian ¹

1. Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

*Coresspondence email: Kivan Beheshti Maal (kbeheshtimaal@iau.ac.ir)

ABSTRACT

Background: Today, oral and dental diseases are one of the most common diseases in the world and severely reduce the quality of life of affected people. Due to the increase in the prevalence of antibiotic-resistant species, it is necessary to find alternative ways to control the pathogenic bacteria of the mouth and teeth. Preventing the binding of oral bacteria by biological control with yeasts can greatly help in reducing costs.

Objective: The purpose of the present study was to isolate and purify yeast and its biological control investigation on pathogenic bacteria of the mouth and teeth.

Methods: Microbial samples were isolated from the mouth and teeth of patients referred to Isfahan Sadoughi Hospital and their macroscopic, microscopic, biochemical and molecular characteristics were investigated. Then the antibiogram test was performed with penicillin, vancomycin, tetracycline, gentamicin and meropenem antibiotics. Yeast samples from Isfahan traditional bakeries were isolated, purified and identified by molecular method. The effect of yeast biocontrol ability on pathogenic bacteria was investigated using BHIB and PDA culture media. The isolated bacterium from the oral sample was Ruthia mucilaginosa JBM-IAUF-1, that it's 16S- rDNA sequence was deposited in NCBI under the accession number of PP594918. The isolated yeast was Saccharomyces cerevisiae JBM-IAUF-5, that it's 18S-rDNA sequence was deposited in NCBI under the accession number of PP616704. Examination of cocultures showed that Saccharomyces cerevisiae completely inhibited the growth of Ruthia mucilaginosa. This study suggests that the use of yeasts, especially Saccharomyces cerevisiae, can be an effective factor in the biological control of oral pathogenic bacteria.

Conclusion: The findings of this study demonstrate the promising potential of Saccharomyces cerevisiae as a biological control agent against oral pathogens, specifically Ruthia mucilaginosa. The complete inhibition observed in co-culture assays highlights yeast-based biocontrol as a viable, natural alternative to conventional antibiotics—particularly in the face of rising antimicrobial resistance. These results pave the way for further research into the development of yeast-derived therapeutic strategies for oral health management.

Keywords: oral and dental diseases, *Ruthia mucilaginosa*, *Saccharomyces cerevisiae*, biological method **References:**

1.Akani NP, Barika PN, Akintola AA and Amadi SC. 2023. Prevalence and Antibiogram of Rothia mucilaginosa and Staphylococcus spp Isolated from Oral Cavity of Students in a Tertiary Institution, South Asian Journal of Research in Microbiology, 15(1): 27-35.

2.Fakruddin MD, Hossain MN, Ahmed MM. 2017. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complementary and Alternative Medicine; 17: 1-1.

3.Becker B, Schmitt MJ. 2017. Yeast Killer Toxin K28: Biology and Unique Strategy of Host Cell Intoxication and Killing. Toxins; 9: 333.

Research Center For Natural & Biopharmaceutical Products
Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran
ISMIST Office:

Research Center For Natural & Biopharmaceutical Products

\$10.5

APPLIED MICROBIOLOGY

14th & 15th May 2025 - Isfahan, Iran

۰۴۳۰۰۲۵۱ کنترل بیولوژیک باکتری *روتیا موسیلاژینوزا* به عنوان پاتوژن دهان و دندان توسط مخمر *ساکارومایسس*

سرويزيه

آرزو جعفری، کیوان بهشتی مآل، سید حسین میردامادیان

' 1074

چکیده

پیشینه پژوهش: امروزه بیماریهای دهان و دندان از شایع ترین بیماری ها در سطح جهان هستند و کیفیت زندگی افراد مبتلا را به شدت کاهش می دهند. با توجه به افزایش شیوع گونه های مقاوم به آنتی تبیوتیک، یافتن راه های جایگزین جهت کنترل باکتری های بیماریزای دهان و دندان امری ضروری است. جلوگیری از اتصال باکتری های دهانی توسط کنترل زیستی با مخمرها می تواند به کاهش هزینه ها کمک به سزایی کند.

هدف: هدف از مطالعه حاضر جداسازی و خالص سازی مخمر و بررسی کنترل بیولوژیک آن روی باکتری های پاتوژن دهان و دندان بود.

روشها: نمونه های میکروبی از دهان و دندان بیماران مراجعه کننده به بیمارستان صدوقی اصفهان جداسازی شد و خصوصیات ماکروسکوپی، میکروسکوپی، بیوشیمیایی و مولکولی آن بررسی شد. سپس آزمون آنتی بیوگرام با آنتیبیوتیک های پنیسیلین، وانکومایسین، تتراسایکلین، جنتامایسین و مروپنم انجام شد. نمونه ی مخمر از نانوایی های سنتی اصفهان جداسازی، خالص سازی و به روش مولکولی شناسایی شد. تأثیر مهاری مخمر جداسازی شده بر باکتری پاتوژن در محیط BHIB و PDA مورد بررسی قرار گرفت.

نتایج: باکتری جداسازی شده از نمونه ی دهانی روتیا موسیلاژینوزا سویه IBM-IAUF-1 بود که با کد دسترسی PP594918 در PP616704 بود که با کد دسترسی PP616704 بود که با کد دسترسی NCBI بود که با کد دسترسی NCBI بود که با کد دسترسی NCBI در پایگاه NCBI ثبت شد. بررسی محیط کشت های مشترک نشان داد که ساکارومایسس سرویزیه رشد روتیا موسیلاژینوزا را به طور کامل مهار نمود.

نتیجه گیری: این مطالعه پیشنهاد می دهد که استفاده از مخمرها به ویژه مخمر ساکارومایسس سرویزیه می¬تواند به عنوان یک عامل موثر در کنترل زیستی باکتری¬های پاتوژن دهانی مطرح باشد.

کلیدواژه: بیماری های دهان و دندان، روتیا موسیلاژینوزا، ساکارومایسس سرویزیه، کنترل زیستی

AP

APPLIED MICROBIOLOGY

Iranian society of Microbial Science & Technology

University

of Isfahan

' 1075

14th & 15th May 2025 - Isfahan, Iran

02170092-Fuctional metagenomics study of polyethylene- degrading microbial samples, collected from polluted sites

F. Hesami Zokaeia*1; S. Gharavia1; E. Asgarania1, M. Zarrabia1, MR. Soudi2

1 Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran 2 Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

Coresspondence email: F. Hesami Zokaeia faeze.hesamia66@gmail.com)

ABSTRACT

Background: Polyethylene (PE) is one of the most abundant plastic with petroleum origin, which is used in various industries. Therefore, pollutants accumulate in different water and soil environments. The ability of microorganisms in bioremediation and removal of contaminants is a promising approach. Since 99% of microorganisms cannot be cultured and isolated using current facilities, metagenomics techniques were used.

Objective: We use metagenomics techniques with a functional-based approach to track efficient enzymes in PE degradation.

Context: For this purpose, sampling was done from 2 plastic waste recycling workshops around Tehran and Yazd desert. As a result of the gene library, 3000 clones were obtained. During searching the desired function, in the primary screening with the model substrate (hexadecane) 760 positive clones, in the secondary screening with the main substrate (PE nanoparticles) 250 clones, compared to the growth rate of clones with consumption PE nanoparticles 30 positive hits and finally by enzyme assaying two key enzymes, laccase, and Alkan hydroxylase, 6 clones selected and sequenced.

Bioinformatic analysis revealed oxidoreductase and hydroxylase enzymes which are involved in the degradation of PE by oxidation and reduction processes.

Finally, the found enzymes can be sub-clone in a suitable host, and by mass production, in combination with other effective enzymes, they can be used in cleaning and removing contaminants in the landfill.

Keywords: Bioremediation, Gene Library, Metagenomics, Polyethylene (PE)

References:

- 1. Vasconcellos, S. P. de, Angolini, C. F. F., García, I. N. S., Martins Dellagnezze, B., Silva, C. C. da, Marsaioli, A. J., Neto, E. V. dos S., & de Oliveira, V. 85 M.(2010)Reprint of: Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs. Org. Geochem., 41(9), 1067–1073.
- 2. Zokaei, F. H., Gharavi, S., Asgarani, E., Zarrabi, M., Soudi, M., & Moosavi-nejad, Z. (2023). A simple method for the production of nano polyethylene particles for rapid assay of polyethylene biodegradation. Biologia, 78(1), 179-186.
- 3. Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., Li, X., Hazen, T., & Streit, W. R.(2018)New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02773-17

Congress Address:

\$10.5

APPLIED MICROBIOLOGY

Iranian society of Wicrobial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

۰۲۱۷۰۰۹۲ بررسی متاژنومیکس عملکردی نمونههای میکروبی تجزیه کننده پلاستیک پلیاتیلن، جمع آوری شده از محیطهای آلوده

فائزه حسامی ذکائی؛ سارا غروی؛ عزت عسگرانی؛ محبوبه ضرابی؛ محمد رضا صعودی

چکیده

' 1076

پیشینه پژوهش: پلیاتیلن (PE) یکی از فراوان ترین و پرمصرف ترین پلاستیک ها با منشأ نفتی است که در صنایع مختلف مورد استفاده قرار می گیرد. بنابراین در محیطهای مختلف آب و خاک به صورت آلاینده تجمع می یابد. توانایی میکروار گانیسمها در زیست پالایی و حذف آلایندهها یک رویکرد امیدوارکننده است. از آنجاکه تقریباً ۹۹درصد میکروارگانیسمها با استفاده از امکانات فعلی آزمایشگاهی غیر قابل کشت و جداسازی هستند، از روش های متاژنومیکس استفاده شده است.

هدف: در این پژوهش با استفاده از روشهای متاژنومیکس بارویکرد برپایه عملکرد به جستجو آنزیمهای کارآمد و موثر در تجزیه PE پرداختیم.

روشها: از ۲ کارگاه بازیافت زبالههای پلاستیکی در اطراف شهر تهران و کویر یزد نمونهبرداری انجام شد. پس از غنیسازی نمونهها در محیط کشت حداقل با DNA ،PE فراژنوم نمونهها استخراج و برای بررسی جامعه میکروبی و همچنین ساخت کتابخانه بیانی با ناقل CopyControl TM pCC1FOS TM Fosmid مورد استفاده قرارگرفت. در نتیجه ساخت کتابخانه ژنی، ۳۰۰۰ همسانه حاصل شد که طی ردیابی عملکرد مورد نظر، در غربال اولیه با سوبسترای مدل (هگزادکان) ۷۶۰ همسانه مثبت، در غربال ثانویه با سوبسترای اصلی (نانوذرات PE همسانه و در نهایت با سنجش دو اصلی (نانوذرات PE همسانه در تجزیه PE همسانه انتخاب و توالی یابی شدند.

نتایج: در بین همسانهها با بررسیهای بیوانفورماتیک به مجموعهای از آنزیمهای اکسیدروردوکتاز، دستیافتیم که با فرایندهای اکسید و احیا در تجزیه PE نقش دارند.

نتیجه گیری: در نهایت با استفاده از یافتههای حاصل از این پژوهش میتوان کشف آنزیمهای جدید در کتابخانههای فراژنگانشناسی میتواند به تولید نوترکیب این کاتالیزورها و پاکسازی و حذف آلایندهها در رآکتورهای زیستی و محلهای دفن زباله کمک کند. کلیدواژه: پلی اتیلن (PE)، زیست پالایی، کتابخانه ژنی، متاژنومیکس

14th & 15th May 2025 – Isfahan, Iran

' 1077

(06310413)- Bioactive Properties of Iranian *Lentinus tigrinus*: Six Years of Research and Future Directions

Hamid R. Pourianfar^{1*}; Safoora Mohammadnejad¹; Yasaman Yazdi¹; Mansooreh Rahmani¹; Mohhamd Reza Rezaee²; Ahmad Drakhshan¹; Shadi Shahtahmasebi¹; Sharareh Rezaeian¹

¹Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Province, Mashhad, Iran ²Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran

Correspondent email: pourianfarh@gmail.com

ABSTRACT

Objective: This article reviews over six years of research into the pharmacological potential of the Iranian medicinal mushroom *Lentinus tigrinus*, beginning with the collection of a wild strain of this mushroom from northeastern Iran. **Context:** Morphological and molecular identification using ITS markers confirmed taxonomy of the strain (NCBI Gene Bank: MK346326.1), making it possible to be domesticated on lignocellulosic substrates to produce fruiting bodies for reproducible research.

Resulte: Biochemical profiling revealed a rich nutritional profile, including dietary fiber, bioactive proteins, and high total phenolic content (5.83 ± 0.08 mg GAE/g, dw). Toxicological assessments in animal models indicated low toxicity at bioactive doses, supporting its safety for human use. A soluble protein fraction demonstrated dual anticancer and antifungal activity, suppressing *MCF-7* and *PC3* cancer cell proliferation (IC₅₀ < 1,000 µg/mL) through apoptosis induction within 6 hours and inhibiting phytopathogenic fungi. Acetone extracts exhibited potent antibacterial activity against *Bacillus cereus* (MIC₅₀ = 40 µg/mL), while hot-water extracts enabled green synthesis of antibacterial silver nanoparticles (AgNPs, 5–25 nm). In addition, combining the biogenic AgNPs with the mushroom extracts produced synergistic antibacterial effects, enhancing therapeutic potential.

Conclusion: By integrating these findings, we position *L. tigrinus* as a multifunctional candidate for drug discovery and nutraceutical applications. This work highlights the critical role of conserving fungal biodiversity in understudied regions like Iran, where species such as *L. tigrinus* may offer untapped resources for addressing global health challenges.

Keywords: *Lentinus tigrinus*, Pharmacological potential, Strain domestication, Bioactive compounds, Green nanotechnology, Iranian fungal biodiversity

References:

- 1. Mohammadnejad S., Pourianfar HR*., Drakhshan A., Jabaleh I., Rezayi M. 2019. Potent antiproliferative and proapoptotic effects of a soluble protein fraction from culinary-medicinal mushroom *Lentinus tigrinus* on cancer cells. *Journal of Food Measurement and Characterization*. 13: 3015-3024.
- 2. Pourianfar, H.R*., Mohammadnejad S., Shahtahmasebi SH, Madjid Ansari A, Zibaei S, Ghadirian R, Rezaeian S-H, Attaran Dowom, S. 2020. Toxicity and Nutritional Assessment of Extracts of Medicinal Tiger Sawgill mushroom, Lentinus tigrinus (Agaricomycetes), a Newly Domesticated in Iran. *International Journal of Medicinal Mushrooms*. 22(11): 1079-1088.
- 3. Yazdi Y, Rezaei MR, Pourianfar HR*. 2023. Antibacterial activity of culinary medicinal polypore mushroom Lentinus tigrinus (Agaricomycetes). International Journal of Medicinal Mushrooms. 25(6): 21-30.

\$10.5

APPLIED MICROBIOLOGY

Iranian society of Microbial Science & Technology

14th & 15th May 2025 - Isfahan, Iran

۰۶۳۱۰۴۱۳ خواص زیست فعال قارچ لنتینوس تیگرینوس (*Lentinus tigrinus*) بومی ایران: شش سال پژوهش و مسیرهای آینده

حمیدرضا پوریانفر؛ صفورا محمدنژاد؛ یاسمن یزدی؛ منصوره رحمانی؛ محمدرضا رضایی؛ احمد درخشان؛ شادی شاه طهماسبی؛ شراره رضائیان

چکیده

' 1078

هدف: این مقاله به بررسی دستاوردهای بیش از شش سال تحقیق در مورد قارچ خوراکی-دارویی Lentinus tigrinus می پردازد که با جمع آوری یک سویه وحشی از شمال شرق ایران آغاز شد.

روشها: شناسایی مورفولوژیکی و مولکولی این قارچ با استفاده از نشانگرهای ITS انجام شد (ثبت در بانک ژن NCBI: MK346326.1). همچنین اهلی سازی روی بسترهای لیگنوسلولزی برای تولید اندام میوهدهی، امکان داشتن مواد لازم در تحقیقات تکرارپذیر را فراهم کرد.

نتیجه گیری: ادغام این یافتهها نشان میدهد که میتوان قارچ بومی L. tigrinus را به عنوان یک کاندید چند منظوره برای کشف دارو و کاربردهای تغذیهای معرفی نمود. این پژوهشها نقش حیاتی حفاظت از تنوع زیستی قارچی را در مناطقی مانند ایران برجسته می کنند. کلیدواژه: قارچ لنتینوس تیگرینوس، پتانسیل دارویی، اهلی سازی، ترکیبات زیست-فعال، نانوتکنولوژی سبز، تنوع زیستی قارچی در ایران

14th & 15th May 2025 - Isfahan, Iran

' 1079

Bacteriophages: Intelligent Weapons in Future Medicine's Battle Against Superbugs and Cancer

Seyed Mahdi Ghasemi¹

¹ Assistant professor at Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University

Correspondent email: smghasemi1985@ashrafi.ac.ir or smghasemi1985@gmail.com

ABSTRACT

Background: In recent years, bacteriophages have gained attention as effective tools against multidrug-resistant pathogens.

Objective: This study reviews the latest research advances, commercial developments, and applications of phages.

Context: The development of genetic engineering, aided by CRISPR technology, has led to the production of more specific and efficient phages. Additionally, genetic manipulation of phages has enabled expanded host range, vaccine production, drug delivery, and cancer treatment. The use of artificial intelligence and machine learning, besides assisting in whole-genome sequencing of phages and bioinformatics analyses, can predict phage-host interactions, facilitating the development of specific phage cocktails for each pathogen. Establishing phage banks and personalized phage therapy—where phage combinations are customized based on the pathogen and patient's condition—has been successful in treating resistant infections. On the other hand, phage endolysins, which destroy resistant bacteria by degrading cell walls, are being developed as antibiotic alternatives. The phageome, which constitutes a major portion of gut viruses, influences host health and immunity by balancing bacterial populations. Beyond their therapeutic roles, phage-based biosensors—enabling rapid bacterial detection due to their high specificity and stability—are under development.

Conclusion: The use of phages and phage-derived enzymes as diagnostic and therapeutic tools has revolutionized medicine in recent decades. By combining genetic engineering, AI-based design, and personalized phage therapy, bacteriophages could become the next generation of intelligent and effective weapons against superbugs and cancer.

1thInternational Congress of

14th & 15th May 2025 - Isfahan, Iran

باکتریوفاژها: سلاحهای هوشمند آینده پزشکی در جنگ با ابرمیکروبها و سرطان

سيدمهدى قاسمي

University

of Isfahan

' 1080

مقدمه: در سالهای اخیر، باکتریوفاژها بهعنوان ابزاری موثر علیه پاتوژنهای مقاوم به چنددارو مورد توجه قرار گرفتهاند.

هدف: در این مطالعه آخرین دستاوردهای پژوهشی و تجاری و کاربردهای فاژها بررسی میشوند.

متن: توسعه مهندسی ژنتیک با کمک تکنیک کریسیر منجر به تولید فاژهای اختصاصی تر با کارایی بهتر شده است. همچنین، دستکاری ژنتیکی فاژها امکان افزایش دامنه میزبانی، تولید واکسن، دارورسانی و درمان سرطان را فراهم کرده است. استفاده از هوش مصنوعی و یادگیری ماشینی علاوه بر کمک به تعیین توالی کل ژنوم فاژ و بررسیهای بیوانفورماتیکی فاژها، می تواند با پیش بینی تعامل فاژ-میزبان منجر به تولید کوکتلهای فاژی اختصاصی برای هر پاتوژن شود. ایجاد بانکهای فاژی و فاژدرمانی شخصی که در آن ترکیب فاژها براساس نوع پاتوژن و شرایط بیمار تنظیم میشود، در بهبود عفونتهای مقاوم موفق بوده است. از طرف دیگر، اندولیزینهای فاژی که با تخریب دیواره سلولی، باکتریهای مقاوم را از بین میبرند به عنوان جایگزین آنتی بیوتیکها در حال توسعه هستند. فاژئوم که بخش عمده ویروسهای روده را تشکیل میدهد، با برقراری تعادل جمعیت باکتریایی بر سلامت و ایمنی میزبان تأثیر می گذارد. علاوه بر نقش فاژها در سلامت و کاربردهای درمانی، حسگرهای مبتنی بر فاژ که بهدلیل اختصاصیت و پایداری بالا امکان تشخیص سریع باکتریها را فراهم میکنند، در حال توسعه هستند.

نتیجه گیری: استفاده از فاژها و آنزیمهای فاژی به عنوان ابزارهای تشخیصی و درمانی، تحولی بزرگ در دهههای اخیر پدید آورده است. با ترکیب مهندسی ژنتیک، طراحی مبتنی بر هوش مصنوعی و فاژدرمانی بیمارمحور، باکتریوفاژها می توانند به سلاحهای مؤثر و هوشمند نسل آینده علیه ابرمیکروبها و سرطان تبدیل شوند.

Iranian society of Microbial Science & Technology

' 1081

14th & 15th May 2025 - Isfahan, Iran

Psychobiotics: neurotransmitter producing probiotics

Gholamreza Zarrini 1*

¹ Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

Corresponding author: Gholamreza Zarrini (zarrini@tabrizu.ac.ir)

ABSTRACT

Background: Psychobiotics are a subset of probiotics that influence central nervous system (CNS) functions and behaviors via the gut-brain axis (GBA). These microbes have attracted increasing interest in neuroscience due to their ability to modulate neurochemical signaling. Psychobiotic activity is largely mediated by the production or stimulation of neurotransmitters, short-chain fatty acids (SCFAs), neurohormones, and anti-inflammatory cytokines.

Objective: The aim of this study was to screen lactic acid bacteria (LAB) for their ability to produce serotonin and melatonin—two key neurohormones involved in mood regulation and circadian rhythms—as potential psychobiotic candidates.

Methods: An initial screening was conducted using gene analysis of key biosynthetic enzymes and thin-layer chromatography (TLC) for neurohormone detection. Strains that tested positive were further confirmed through gene sequencing and high-performance liquid chromatography (HPLC) to verify serotonin and melatonin production.

Results: Several LAB strains belonging to the genera Lactobacillus and Bifidobacterium were identified as capable of producing or promoting the synthesis of important neuroactive compounds, including GABA, serotonin, dopamine, and melatonin. Positive strains identified through TLC and gene screening were validated via HPLC.

Conclusion: The findings highlight the psychobiotic potential of selected LAB strains capable of producing serotonin and melatonin. These strains represent promising candidates for future research and development of probiotic-based interventions aimed at supporting mental health and managing neurological disorders. However, more comprehensive studies are required to confirm their therapeutic efficacy and elucidate underlying mechanisms.

Key words: Psychobiotics, Gut-brain axis, Lactic acid bacteria, Serotonin, Melatonin, Neurotransmitters, Probiotics, HPLC, TLC

Refences:

Kimse L, Reinis A, Mikelsone-Jansone L, Gintere S, Krūmiņa A. A Narrative Review of Psychobiotics: Probiotics That Influence the Gut-Brain Axis. Medicina (Kaunas). 2024 Apr 5;60(4):601.

Arnao MB, Giraldo-Acosta M, Castejón-Castillejo A, Losada-Lorán M, Sánchez-Herrerías P, El Mihyaoui A, Cano A, Hernández-Ruiz J. Melatonin from Microorganisms, Algae, and Plants as Possible Alternatives to Synthetic Melatonin. Metabolites. 2023 Jan 2;13(1):72.

Mosquera FEC, Lizcano Martinez S, Liscano Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients. 2024 Apr 30;16(9):1352.

14th & 15th May 2025 - Isfahan, Iran

سایکوبیوتیکها: پروبیوتیکهای تولیدکننده انتقالدهندههای عصبی

غلامرضا زريني

چکیده

' 1082

پیشینه پژوهش: سایکوبیوتیکها زیرمجموعهای از پروبیوتیکها هستند که از طریق محور روده—مغز (GBA) بر عملکردهای سیستم عصبی مرکزی (CNS) و رفتار تأثیر میگذارند. این میکروارگانیسمها بهدلیل توانایی در تنظیم سیگنالهای نوروکمیکال، توجه روزافزونی را در علوم اعصاب به خود جلب کردهاند. فعالیت سایکوبیوتیکی عمدتاً از طریق تولید یا تحریک تولید انتقال دهندههای عصبی، اسیدهای چرب زنجیرهکوتاه (SCFAs)، نوروهورمونها و سایتوکاینهای ضدالتهابی انجام میشود.

هدف: هدف از این مطالعه، غربالگری باکتریهای اسید لاکتیک (LAB) بهمنظور بررسی توانایی آنها در تولید سروتونین و ملاتونین، دو نوروهورمون کلیدی در تنظیم خلقوخو و ریتم شبانهروزی، بهعنوان کاندیدهای بالقوه سایکوبیوتیکی بود.

مواد و روشها: در مرحله نخست، آنالیز ژنهای آنزیمهای کلیدی در مسیرهای بیوسنتزی و کروماتوگرافی لایه نازک (TLC) برای شناسایی نوروهورمونها مورد استفاده قرار گرفت. سویههای مثبت با استفاده از توالی یابی ژن و کروماتوگرافی مایع با کارایی بالا (HPLC) جهت تأیید تولید سروتونین و ملاتونین بررسی شدند.

نتایج: چندین سویه از باکتریهای اسید لاکتیک متعلق به جنسهای Lactobacillus و Bifidobacterium شناسایی شدند که قادر به تولید یا تحریک سنتز ترکیبات نوروآکتیو مهمی از جمله GABA، سروتونین، دوپامین و ملاتونین بودند. سویههای مثبت که از طریق TLC و آنالیز ژنی شناسایی شدند، با روش HPLC تأیید گردیدند.

نتیجه گیری: یافتهها نشاندهنده پتانسیل سایکوبیوتیکی برخی سویههای باکتریهای اسید لاکتیک در تولید سروتونین و ملاتونین است. این سویهها کاندیدهای امیدبخشی برای تحقیقات آینده و توسعه مداخلات پروبیوتیکی بهمنظور ارتقاء سلامت روان و مدیریت اختلالات عصبی به شمار میروند. با این حال، انجام مطالعات جامعتر برای تأیید اثربخشی درمانی و روشن شدن مکانیسمهای زیربنایی ضروری است.

كليدواژهها: سايكوبيوتيك، محور روده-مغز، باكترى اسيد لاكتيك، سروتونين، ملاتونين، انتقال دهندههاي عصبي، پروبيوتيك

14th & 15th May 2025 - Isfahan, Iran

APPLIED MICROBIOLOGY

THE LIED WHO TO BE

' 1083

Transforming Waste into Value-Added Products: Biorefineries for a Sustainable Future

Mohammad A. Asadollahi¹

¹ Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Corresponding author: ma.asadollahi@ast.ui.ac.ir

ABSTRACT

Currently, the production of most chemical products and fuels worldwide is based on the use of fossil fuel resources. Given the limited reserves of these resources and their significant role in greenhouse gas emissions, the progression of global warming, and climate change, fossil fuels are not considered sustainable resources. On the other hand, vast amounts of industrial and agricultural waste, such as lignocellulosic biomass, municipal solid waste (MSW), and sewage sludge, are generated each year. With appropriate pre-treatment, these wastes can be converted into various valuable chemicals and biofuels using biorefineries. Biorefineries are similar to traditional oil refineries but they focus on the use of renewable resources to create a circular economy and minimize greenhouse gas emissions. Therefore, biorefineries play a crucial role in sustainable development, energy supply, and addressing environmental challenges.

In this presentation, I will share the results of several years of research conducted by my team on the production of valuable products from waste resources using biorefineries. Specifically, waste materials such as lignocellulosic biomass, MSW, and excess sludge from wastewater treatment plants have been used to produce products like butanol, ethanol, and acetone through the ABE fermentation process, as well as microbial lipids and polysaccharides such as xanthan gum. Various methods, including pre-treatment with dilute acid and organic solvents, have been employed, and the pre-treatment conditions have been optimized. Moreover, other valuable by-products such as adsorbents and wound dressings have been produced from these waste resources. The results obtained demonstrate the potential of these waste resources for the industrial production of chemical products and biofuels through biorefineries.

Keywords: Biorefinery, Waste materials, Fermentation processes, Pretreatment, Butanol, Xanthan gum, Lignocellulosic biomass

\$10.5

APPLIED MICROBIOLOGY

University of Isfahan
Technology

14th & 15th May 2025 - Isfahan, Iran

تبدیل ضایعات به محصولات باارزش افزوده: پالایشگاههای یستی برای یک آینده پایدار

محمدعلي اسداللهي

' 1084

چكىدە

در حال حاضر، تولید اغلب فراوردههای شیمیایی و مواد سوختی در دنیا برپایه استفاده از منابع سوختهای فسیلی است. با توجه به محدودیت ذخایر این منابع و نقش مهم آنها در انتشار گازهای گلخانهای، روند پیشرفت گرمایش زمین و تغییر اقلیم، سوختهای فسیلی به عنوان منابع پایدار به شمار نمیروند. از سوی دیگر، هر ساله مقادیر انبوهی ضایعات صنعتی و کشاورزی مانند زیست توده لیگنوسلولزی، ضایعات جامد شهری و لجن تصفیهخانههای فاضلاب تولید میشود. این ضایعات را در صورت پیشفراوری مناسب می توان با استفاده از پالایشگاههای زیستی به انواع موادشیمیایی باارزش و سوختهای زیستی تبدیل نمود. پالایشگاههای زیستی مشابه پالایشگاههای سنتی نفت هستند با این تفاوت که در پالایشگاههای زیستی از منابع تجدیدپذیر در راستای اقتصاد چرخشی و حداقل کردن انتشار گازهای گلخانهای استفاده میشود. بنابراین، پالایشگاههای زیستی نقش کلیدی در توسعه پایدار، تامین انرژی و حل چالشهای زیست، حیطی ایفا می کنند.

در این سخنرانی، نتایج تجربیات چند ساله گروه پژوهشی اینجانب در زمینه تولید فراوردههای باارزش از منابع ضایعاتی با استفاده از پالایشگاههای زیستی ارائه می شود. به طور خاص، ضایعاتی همانند زیست توده لیگنوسلولزی، ضایعات جامد شهری و لجن مازاد تصفیه خانه های فاضلاب برای تولید محصولاتی همانند بوتانول اتانول استن در فرایند تخمیری ABE، لیپید میکروبی و پلی ساکاریدهایی مانند صمغ زانتان استفاده شده اند. انواع روشها مانند پیش فراوری با اسید رقیق و پیش فراوری با حلالهای آلی استفاده شده و شرایط پیش فراوری به بینه سازی شده است. از طرفی، در کنار محصولات اصلی اشاره شده، محصولات جانبی باارزش دیگری همانند جاذب ها و زخم پوشها با استفاده از این منابع ضایعاتی تولید شده است. نتایج به دست آمده نشان دهنده پتانسیل این منابع ضایعاتی برای تولید صنعتی فراوردههای شیمیایی و سوختهای زیستی از طریق پالایشگاههای زیستی است.

كليدواژهها: پالايشگاه زيستي، مواد ضايعاتي، فرايندهاي تخميري، پيشفراوري، بوتانل، صمغ زانتان، زيستتوده ليگنوسلولزي

14th & 15th May 2025 - Isfahan, Iran

Bacteriophages: Past, Present and Future

Majid Bouzari¹

¹ Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

' 1085

Corresponding author: bouzari@sci.ui.ac.ir

ABSTRACT

Bacteriophages, or phages, have had a fascinating journey from early discovery to modern applications and potential future breakthroughs. Bacteriophages were first discovered independently by Frederick Twort (1915) and Félix d'Hérelle (1917). Early phage therapy showed promise, particularly in Eastern Europe and the former Soviet Union. However, the rise of antibiotics in the mid-20th century led to a decline in phage therapy in Western medicine. Challenges included limited understanding of phage biology, poor standardization, and inconsistent clinical results.

In present, there is renewed interest in phages because of antibiotic resistance. Advances in molecular biology, genomics, and biotechnology have improved the isolation, characterization, and engineering of bacteriophages. Compassionate use cases and small clinical trials have demonstrated efficacy against multidrug resistant (MDR) pathogens. Phage therapy is being actively researched, with some experimental treatments already used for multidrug-resistant infections such as chronic wound infections, cystic fibrosis, infected burn wounds and digestive tract infections. Phage therapy isn't limited to medical treatments; it has several other applications such as agriculture that phages are used to control bacterial infections in crops and livestock, reducing the need for chemical pesticides and antibiotics. In the food industry, to prevent bacterial contamination, enhance food safety and extende shelf life. Environmental applications in wastewater treatment to target and eliminate harmful bacteria, improving water quality. In biocontrol strategies to manage bacterial populations in various settings for example, in aquaculture to prevent disease in fish. These applications demonstrate the versatility of phage therapy beyond the medical field.

In this presentation, the results of several years of research conducted by my team on the isolation and characterization of novel bacteriophages in different aspects of phage therapy mentioned above are elucidated.

In the future, phages could revolutionize medicine. Personalized phage therapy, where specific phages are tailored to an individual's infection, might become routine. Synthetic biology could enhance phages to be more effective against bacteria or even deliver therapeutic genes. Beyond medicine, phages could be key players in microbiome engineering and agriculture, helping to control bacterial populations without harming beneficial microbes, and offering a more precise approach than broad-spectrum antibiotics. This could be useful in gut health, wastewater treatment, and even space travel, where microbiome stability is crucial.

Regulatory challenges remain, especially in Western medicine, as phages are highly specific, requiring personalized treatments. However, advances in synthetic biology could lead to standardized, customizable phage therapies. Although it is unlikely that phages will ever entirely replace antibiotics, given that the majority of antibiotics are used in agriculture and livestock, phage-based approaches could significantly improve antibiotic stewardship from the One Health perspective.

Keywords: Bacteriophage, Phage therapy, Biocontrol

Research Center For Natural & Biopharmaceutical Products
Faculty of Biological Science & Technology, University of Isfahan, Isfahan, Iran
ISMIST Office:

14th & 15th May 2025 - Isfahan, Iran

باكتريوفاژها: گذشته، حال و آينده

مجید بوذری

چکیده

' 1086

University

of Isfahan

باکتریوفاژها یا فاژها از کشف اولیه تا کاربردهای مدرن و پیشرفتهای بالقوه آینده سفری جذاب داشتهاند. باکتریوفاژها برای اولین بار به طور مستقل توسط فردریک توورت (۱۹۱۵) و فلیکس ده رل (۱۹۱۷) کشف شدند. در ابتدا، فاژ درمانی به ویژه در اروپای شرقی و اتحاد جماهیر شوروی سابق، امیدبخش بود. با این حال، ظهور آنتی بیوتیک ها در اواسط قرن بیستم منجر به کاهش فاژ درمانی در طب غربی شد. چالشها شامل در ک محدود از زیستشناسی فاژ، استانداردسازی ضعیف و نتایج بالینی متناقض بود. در حال حاضر، به دلیل مقاومت آنتی بیوتیکی، علاقه مجددی به فاژها به وجود آمده است. پیشرفت در زیست شناسی مولکولی، و بیوتکنولوژی جداسازی، برر سی خصوصیات و مهندسی باکتریوفاژها را بهبود بخشیده است. موارد استفاده دلسوزانه و کارآزماییهای بالینی کوچک اثربخشی را در برابر پاتوژنهای مقاوم به چند دارو (MDR) نشان دادهاند. فاژ درمانی به طور فعال در حال تحقیق است و برخی از درمان های تجربی قبلا برای عفونت های مقاوم به چند دارو مانند عفونت زخم مزمن، فیبروز کیستیک، زخم های سوختگی عفونی و عفونت های دستگاه گوارش مورد استفاده قرار گرفته است. فاژ درمانی به درمان های پزشکی محدود نمی شود. چندین کاربرد دیگر مانند کشاورزی دارد که از فاژها برای کنترل عفونت های باکتریایی در محصولات کشاورزی و دام استفاده می دهد. در صنایع غذایی، برای جلوگیری از آلودگی استفاده می مود و نیاز به آفت کش های شیمیایی و آنتی بیوتیک ها را کاهش می دهد. در صنایع غذایی، برای جلوگیری از آلودگی هدف قرار دادن و از بین بردن باکتری های مضر و بهبود کیفیت آب مورد استفاده قرار گرفته است. در استراتژی های کنترل زیستی مدید عدر در مدید عدر محیط های مختلف، به عنوان مثال، در آبزی پروری برای جلوگیری از بیماری در ماهی نیز برای مدیر در محیط های مختلف، به عنوان مثال، در آبزی پروری برای جلوگیری از بیماری در ماهی نیز کاربرد داشته است. این کاربردها تطبیق پذیری فاژ درمانی را فراتر از حوزه پزشکی نشان می دهد.

در این ارائه، نتایج چندین سال تحقیق انجام شده توسط تیم تحقیقاتی اینجانب در مورد جداسازی و شناسایی باکتریوفاژهای جدید در جنبه های مختلف فاژ درمانی که در بالا ذکر شد، توضیح داده خواهد شد.

در آینده، فاژها می توانند پزشکی را متحول کنند. فاژ درمانی شخصی، که در آن فاژهای خاص متناسب با عفونت یک فرد طراحی شده اند، ممکن است تبدیل به یک امر رایج شود. زیستشناسی مصنوعی میتواند فاژها را در برابر باکتریها موثرتر کند یا حتی ژنهای درمانی را تحویل دهد. فراتر از پزشکی، فاژها می توانند بازیگران کلیدی در مهندسی میکروبیوم و کشاورزی باشند و به کنترل جمعیت باکتری ها بدون آسیب رساندن به میکروب های مفید کمک کنند و رویکرد دقیق تری نسبت به آنتی بیوتیک های طیف وسیع ارائه دهند. این می تواند در سلامت روده، تصفیه فاضلاب و حتی سفرهای فضایی مفید باشد، جایی که پایداری میکروبیوم بسیار مهم است.

چالشهای نظارتی، بهویژه در پزشکی غربی، همچنان وجود دارد، زیرا فاژها بسیار خاص هستند و به درمانهای شخصی نیاز دارند. با این حال، پیشرفتها در زیستشناسی مصنوعی می تواند منجر به درمانهای استاندارد شده و قابل تنظیم فاژ شود. اگرچه بعید است که فاژها به طور کامل جایگزین آنتیبیوتیکها شوند، با توجه به اینکه اکثر آنتیبیوتیکها در کشاورزی و دامداری استفاده می شوند، رویکردهای مبتنی بر فاژ می توانند به طور قابل توجهی نظارت بر آنتیبیوتیک را از دیدگاه یک سلامت بهبود بخشند. واژه های کلیدی: باکتریوفاژ، فاژ درمانی، کنترل زیستی

Iranian society of University Microbial Science & of Isfahan Technology

14th & 15th May 2025 - Isfahan, Iran

Bioremediation of Soils Contaminated with Petroleum Compounds, from the Laboratory to **Industry**

Hanif Khodavardi¹

¹ Petroleum Industry Research Institute

' 1087

Abstract

Crude oil is a complex mixture of millions of different organic compounds, with the two elements carbon and hydrogen constituting its major part. The structure and composition of crude oil from different reservoirs vary greatly, and amounts of sulfur (from negligible to 8% by weight), nitrogen (from negligible to 6% by weight), oxygen (from negligible to 1.8% by weight), and small amounts of metals such as nickel and vanadium are found in D,9. One method for different crude oils is to look at the percentage of the groups that make up the crude oil, namely aliphatic hydrocarbons, aromatics, resins, and asphaltenes, which are separated based on their solubility in different solvents. They are called.

Currently, three general methods of cleaning up are used to remove contamination from soils contaminated with crude oil: physical, chemical, and biological. The most common physical and chemical methods of treating contaminated soils include collection and burial, heat treatment and oxidation or chemical neutralization, incineration of contaminants, and sometimes of contaminated diseases. These methods are relatively quick and effective, but very expensive and practically transfer contamination from one substrate to another and have side effects. Biological cleaning methods are based on breaking down and decomposing contaminant compounds and converting them into non-toxic compounds using microbial processes. The ultimate goal of cleaning is the complete decomposition and metabolism of hydrocarbons, converting them into biological materials, water, and carbon dioxide. Biodegradation has significant economic and environmental benefits compared to other physical and chemical cleanup methods and has the least harm to human health and ecosystems.

The Petroleum Industry Research Institute has started cleaning contaminated soils as one of its main activities since 2008. For this purpose, various methods such as Bioslurry, as well as optimization of nitrogen, phosphorus, moisture, Balking Agents and auxiliary carbon sources are initially investigated in the laboratory. During the cleaning process, two main parameters, TPH and microbial number, were monitored as process quality, which causes reduction and increase. After that, the Petroleum Industry Research Institute entered field projects (as follows):

The first field project was carried out on Siri Island using the Landfarm method, during which 2 thousand tons of contaminated soil were cleaned using this method. In the Landfarm method, aeration is carried out through breaking and irrigation using the Cret method. The next project in the household area was carried out using the biopile method - for the first time in Iran - during which 10 thousand tons of soil contaminated with drilling waste were cleaned. In the biopile method, aeration is carried out by a blower inside a network under the pile. A small project in the Gavzard area was carried out using the Passive Aeration method - for the first time in Iran - with a volume of 300 tons. Another project was carried out on Kharg Island using the biopile method, during which 10 thousand tons of soil with a salinity of 5% (for the first time in Iran) were cleaned. A permanent cleaning site was built as a pilot at Mobin Petrochemical with a capacity of 100 tons so that the aeration system could be used permanently in different rounds. A project to clean 500 tons of soil contaminated with PAH was carried out at Ariasassol Petrochemical - for the first time in Iran.

The largest soil cleanup project in the country was carried out in the wheat-growing region with a volume of 20,000 tons using the biopile method, and in the same region another project was successfully carried out using the in-situ method - for the first time in Iran. An innovative project in Sabzevar to clean sludge from product tanks using anaerobic digestion and biopile methods was also successfully carried out.

14th & 15th May 2025 - Isfahan, Iran

پاکسازی زیستی خاکهای آلوده به ترکیبات نفتی، از آزمایشگاه تا صنعت

حنيف خداوردي

چکیده

' 1088

نفت خام آمیزه ی پیچیدهای از میلیونها ترکیب آلی مختلف است که دو عنصر کربن و هیدروژن بخش عمده ی آن را تشکیل می دهند. ساختار عنصری و ترکیبات تشکیل دهنده ی نفت خام مخازن مختلف، بسیار متفاوت است و میزان گوناگونی از گوگرد (از ناچیز تا ۸ درصد وزنی)، نیتروژن (از ناچیز تا ۶ درصد وزنی)، اکسیژن (از ناچیز تا ۱/۸ درصد وزنی) و اندکی از برخی فلزها مانند نیکل و وانادیم در آن دیده می شود (Premuzic و Premuzic). یک روش برای بررسی شیمیایی و طبقهبندی نفتهای خام گوناگون، نگاه به درصد گروههای تشکیل دهنده ی نفت خام یعنی هیدروکربنهای آلیفاتیک، آروماتیکها، رزینها و آسفالتینهاست که بر پایه ی حلالیت در حلالهای گوناگون از هم جدا می شوند و گاه روی هم مجموعه ی SARA (نمادی از سرواژههای انگلیسی آنها) نامیده می شوند.

در حال حاضر از سه روش کلی پاکسازی فیزیکی، شیمیایی و زیستی جهت رفع آلودگی خاکهای آغشته به نفت خام استفاده می شود. متداول ترین روشهای فیزیکی و شیمیایی تیمار خاکهای آلوده شامل جمعآوری و دفن، تیمار حرارتی و اکسیداسیون و یا خنثی سازی شیمیایی، سوزاندن آلودگیها و گاه شستشوی بستر آلوده است. این روشها نسبتاً سریع و موثر، اما بسیار هزینهبر هستند و عملاً آلودگی را از بستری به بستر دیگر انتقال می دهند و عوارض جانبی گستردهای را به همراه دارند. روشهای پاکسازی زیستی عمدتاً بر شکستن و تجزیه ترکیبات آلاینده و تبدیل آنها به ترکیبات غیرسمی با استفاده از فرآیندهای میکربی استوار هستند. هدف نهایی پاکسازی، تجزیه و متابولیسم کامل هیدروکربنها، تبدیل آنها به مواد زیستی، آب و دی اکسید کربن است. تجزیهی زیستی در مقایسه با سایر روشهای پاکسازی فیزیکی و شیمیایی دارای مزایای اقتصادی و زیست محیطی بارزی است و کمترین اثرات سوء را بر سلامت انسان و اکوسیستمها دارد.

پژوهشگاه صنعت نفت از سال ۱۳۸۷ کار پاکسازی زیستی خاکهای آلوده را به عنوان یکی از محورهای اصلی فعالیت خود آغاز کرده است. به این منظور ابتدا در فاز آزمایشگاهی، روشهای مختلف مانند Bioslurry، و نیز بهینهسازی نسبتهای نیتروژن، فسفر، رطوبت، Balking Agents و منبع کربن کمکی بررسی شد. در طول فرایند پاکسازی، دو پارامتر اصلی TPH و شمارش میکروبی به عنوان معیار کیفیت فرایند پایش شد، که یکی کاهش و دیگری افزایش مییابد. پس از آن پژوهشگاه صنعت نفت وارد پروژههای میدانی (به شرح زیر) گردید:

نخستین پروژه میدانی در جزیره سیری با روش لندفارم انجام شد که طی آن ۲ هزار تن خاک آلوده با این روش پاکسازی شد. در روش لندفارم هوادهی از طریق شخمزنی و آبیاری به روش کرتی انجام میشود. پروژه بعدی در منطقه خانگیران با روش بایوپایل هوادهی برای نخستین بار در ایران – انجام که طی آن ۱۰ هزار تن خاک آلوده به هرزاب حفاری پاکسازی شد. در روش بایوپایل هوادهی توسط دمنده درون شبکهای در زیر پایل انجام میشود. یک پروژه کوچک در منطقه گاوزرد با روش مدکه طی آن حجم ۱۰ نخستین بار در ایران – انجام شد با حجم ۳۰۰ تن. پروژه دیگری در جزیره خارگ با روش بایوپایل انجام شد که طی آن حجم ۱۰ هزار تن خاک با شوری ۵ درصد (برای نخستین بار در ایران) پاکسازی شد. یک سایت پاکسازی دایمی بصورت پایلوت در پتروشیمی مبین با ظرفیت ۱۰۰ تن احداث شد تا سامانه هوادهی بصورت دایمی در راندهای مختلف مورد استفاده قرار گیرد. در پتروشیمی آریاساسول پروژهای پاکسازی پاکسازی با در ایران – انجام شد.

بزرگترین پروژه پاکسازی خاک در کشور در منطقه گندمکار با حجم ۲۰ هزار تن با روش بایوپایل انجام شد، و در همان منطقه پروژه دیگری با روش درجا (In-Situ) - برای نخستین بار در ایران - با موفقیت انجام شد.

یک پروژه نوآورانه در سبزوار بمنظور پاکسازی لجنهای مخازن فرآورده با روش هضم بیهوازی و بایوپایل نیز با موفقیت انجام شد.

14th & 15th May 2025 - Isfahan, Iran

Bioconvergence: Co-creating a Sustainable Future with Nature's Microarchitecture

Seyed Mehdi Alavi¹

¹ Agricultural Biotechnology Research Institute, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

' 1089

ABSTRACT

The current biological revolution, centered on concepts such as bioconvergence and co-creation with nature, is transforming the methods of production, design, and interaction with biological systems. This article, emphasizing the Krebs cycle of creativity (comprehensive re-creation of goods, services, and the whole of life based on information, knowledge, technologies, and biological innovations) and the fundamental technologies approach (based on the cycle of design, manufacture, test, and learn), examines the role of biotechnology and microbiology in creating a sustainable future. Among the main axes discussed in this scientific inquiry are the use of microbial biomass to produce food and non-food alternatives; Engineering cell factories as a platform for producing valuable chemical compounds and fragrances; transitioning from linear genetic processes to complex genetic circuits and designing entirely new metabolic pathways; the role and thinking of design and bioart in breaking the traditional boundaries of science and creativity. This scientific review shows how the synergy of science, design technology and art can lead to the creation of a dynamic bioeconomy, reducing dependence on fossil resources and moving towards cyclical and sustainable production systems.

Keywords: Bioconvergence, Krebs cycle of creativity, fundamental technologies approach, microbial biomass, bioeconomy.

4th National Congress & 1thInternational Congress of

APPLIED MICROBIOLOGY

14th & 15th May 2025 - Isfahan, Iran

همگرایی زیستی: همآفرینی آینده پایدار با ریزمعمار طبیعت

سید مهدی علوی

چکیده

' 1090

انقلاب زیستی کنونی، با محوریت مفاهیمی چون همگرایی زیستی و همآفرینی با طبیعت، در حال دگرگونسازی شیوههای تولید، طراحی و تعامل با سیستمهای زیستی است. مقاله حاضر با تأکید بر چرخه کربس خلاقیت (بازآفرینی همهجانبه کالا، خدمات و کل زندگی مبتنی بر اطلاعات، دانشها، فناوریها و نوآوریهای زیستی) و رویکرد فناوریهای بنیادی (مبتنی بر چرخه طراحی، ساخت، آزمون و یادگیری) به بررسی نقش زیستفناوری و میکروبیولوژی در خلق آیندهای پایدار میپردازد. از جمله محورهای اصلی مورد بحث در این کنکاش علمی میتوان به بهرهگیری از زیستتوده میکروبی برای تولید جایگزینهای غذایی و غیرغذایی؛ مهندسی کارخانههای سلولی به عنوان بستری برای تولید ترکیبات ارزشمند شیمیایی و عطرها؛ گذار از فرآیندهای ژنتیکی خطی به مدارهای ژنتیکی پیچیده و طراحی مسیرهای متابولیک کاملاً جدید؛ نقش و تفکر طراحی و هنر زیستی در شکستن مرزهای سنتی علم و خلاقیت اشاره کرد. این بررسی علمی نشان میدهد که چگونه همافزایی علم، فناوری طراحی و هنر میتواند به خلق اقتصاد زیستی پویا، کاهش وابستگی به منابع فسیلی و حرکت به سوی نظامهای تولید چرخهای و پایدار بیانجامد.

کلیدواژهها: همگرایی زیستی، چرخه کربس خلاقیت، رویکرد فناوریهای بنیادی، زیستتوده میکروبی، اقتصاد زیستی.

